
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED FEBRUARY, 2021 1

UAV Localization Using Autoencoded Satellite
Images

Mollie Bianchi and Timothy D. Barfoot

Abstract—We propose and demonstrate a fast, robust method
for using satellite images to localize an Unmanned Aerial Vehicle
(UAV). Previous work using satellite images has large storage and
computation costs and is unable to run in real time. In this work,
we collect Google Earth (GE) images for a desired flight path
offline and an autoencoder is trained to compress these images
to a low-dimensional vector representation while retaining the
key features. This trained autoencoder is used to compress a
real UAV image, which is then compared to the precollected,
nearby, autoencoded GE images using an inner-product kernel.
This results in a distribution of weights over the corresponding
GE image poses and is used to generate a single localization and
associated covariance to represent uncertainty. Our localization
is computed in 1% of the time of the current standard and is
able to achieve a comparable RMSE of less than 3m in our
experiments, where we robustly matched UAV images from six
runs spanning the lighting conditions of a single day to the same
map of satellite images.

Index Terms—Localization; Aerial Systems: Perception and
Autonomy; Vision-Based Navigation

I. INTRODUCTION

UNMANNED Aerial Vehicles (UAVs) are being used for
more and more applications while still remaining largely

reliant on GPS. The disadvantage of a GPS-based localization
system is that it is susceptible to dropout, jamming, and
interference. In GPS-denied environments, the primary sensor
becomes vision due to its low weight and fast computation.

Visual Odometry (VO) is commonly used on UAVs but
requires corrections to prevent drift. Visual Simultaneous
Localization and Mapping (SLAM) is one solution to this
issue, but its use on UAVs has primarily been demonstrated
in indoor environments or small areas [2]–[4]. One method
[5] for long distance autonomous, outdoor, aerial navigation
in GPS-denied environments uses the Visual Teach and Repeat
(VT&R) method [6]. By generating a locally consistent visual
map on an outbound pass under manual or GPS control, the
UAV is then able to return autonomously along that path
without GPS.

VT&R is limited in that it requires a manual outbound pass
and, because it relies primarily on point-feature matching (e.g.,
Speeded-Up Robust Features (SURF) [7]), the return pass
must be completed shortly after the outbound pass so that

Manuscript received: October, 15, 2020; Revised: January, 8, 2021; Ac-
cepted: February, 4, 2021. This paper was recommended for publication by
Editor Sven Behnke upon evaluation of the Associate Editor and Reviewers’
comments.

The authors are affiliated with the University of
Toronto Institute for Aerospace Studies (UTIAS):
mollie.bianchi@robotics.utias.utoronto.ca,
tim.barfoot@utoronto.ca

Fig. 1: 1. Offline before flight, images are rendered in a grid
pattern around the desired path using Google Earth [1]. An
example of this grid pattern is shown at the bottom of the
figure. 2. These images are used to train an autoencoder using
photometric loss and skip losses. 3. All the encoded training
images and the encoder are transferred onto the UAV. 4. The
live image captured by the UAV is passed through the trained
encoder. 5. The encoded live image is compared with a subset
of the encoded reference images using an inner-product kernel
outputting a weight for each reference image. 6. These weights
are used to compute the localization and covariance.

the lighting conditions along the path have not significantly
changed. It does not allow for the repeated traversal of the
path using a map generated much earlier.

A unique opportunity for aerial vehicles is that there is an
existing database of satellite images covering the entire world
in Google Earth (GE). In many areas, these satellite images
have been used to generate a detailed 3D reconstruction of
a scene from which it is possible to render an image at any
desired pose. In [8], the idea was proposed to replace the
manual outbound pass in VT&R with a virtual pass in GE.

The largest challenge with this idea is finding a way to
accurately and robustly localize real live images captured from
a UAV with the artificial images rendered from GE. Since
the satellite images used for the reconstruction were captured

ar
X

iv
:2

10
2.

05
69

2v
1 

 [
cs

.C
V

] 
 1

0 
Fe

b 
20

21



2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED FEBRUARY, 2021

Fig. 2: An image from each of the six lighting conditions in the dataset and a corresponding image rendered from GE [1] is
shown. The shadows present in the GE images most closely resemble those present in the morning lighting condition. The
shadows in the afternoon and evening datasets appear on the opposite side of objects as compared to GE.

years ago, there are differences with the live images in terms of
lighting, small object movement (e.g. vehicles, trailers), large
structural changes (e.g. building additions/demolitions), and
unusual object reconstruction, particularly for non-rectangular
based objects like trees. This makes it difficult for feature-
based methods to obtain accurate and robust results in many
cases.

Patel et al. [8] used multiple GE images rendered around
the desired flight path and used mutual information (MI)
to search for the best alignment with the live image. This
approach was computationally expensive and would require
storing thousands of full-sized images on board the UAV. It is
not capable of running in real time.

This work introduces a new method to use prerendered
satellite images that is fast and storage efficient. As in [8],
images are rendered around the desired flight path in GE.
An autoencoder is trained on these path-specific images to
compress them to a much smaller vector representation. The
same autoencoder is used to compress the live images as well.
The compressed live image vector is compared to all nearby
compressed GE image vectors through an inner-product kernel.
This results in weights associated with each of the corre-
sponding GE image poses. From these weights, a localization
for the longitude, latitude, and heading with accompanying
covariance is computed. This method has been demonstrated
on a real UAV dataset of images along a 1.1km path at six
different times of day covering several lighting conditions.
In comparison with [8], we are able to achieve the same
accuracy performance on image registration and run in 1%
of the computation time.

The rest of this paper is organized as follows. Section
II reviews the related work from the literature. Section III
discusses our methodology. Sections IV and V provide our
experimental results on a real UAV dataset. Section VI wraps
up with our conclusions and suggestions for future work.

II. RELATED WORK

A. Aerial Visual Localization

Early works in visual aerial localization looked at using
edge detection [9] or a combination of classical techniques

with learned semantic segmentation [10]. Both these ap-
proaches perform better at high-altitude flights where more
structure is present in the images and suffer in areas com-
prising mainly grass and trees. There have been more recent
feature-based methods that match street view images to images
from a ground robot [11] and a UAV [12], [13]. Place recog-
nition is performed using a visual bag-of-words technique
and then followed by image registration using Scale Invariant
Feature Transform (SIFT) [14] keypoints. However, feature
matching has been shown to contain significant numbers of
outliers due to large changes in appearance and viewpoint.

The current best method for localization using satellite
images is the MI based approach presented in [8]. This was
largely inspired by [15], [16] in which MI had been used to
localize monocular camera images within a textured 3D model
of the environment. Adapting this idea to a UAV, Patel et al. [8]
were able to achieve less than 3m and 3◦ Root Mean Square
Error (RMSE) on low-altitude flights at six different times of
day. In their work, images were rendered from GE beforehand
every 3m along the path and around the path at intervals of
6m. The Normalized Information Distance (NID), which is a
MI based metric, was computed between the live image and
all images within 4m of the prior pose estimate (e.g., from
filtering) to select the best-matching image. The alignment
between this geo-referenced image and the live image was then
computed by a series of coarse and refined optimizations of
the warping parameters. Each step of the optimization required
numerically computing the Jacobian of the NID with respect to
the warping parameters. This process was quite slow making
this method incapable of running in real time. As well, the
images were stored in their full 560×315 resolution resulting
in large storage costs for longer paths. We build on the idea
of prerendering images around a desired path in GE, but
improve upon [8] by eliminating the costly optimization step,
improving runtime, and decreasing storage requirements.

B. Autoencoders

One of the core limitations with [8] is that the images
are large, each is 176,400 pixels making the MI computation
slower. A common learning-based method for compressing
images is autoencoders [17]. One neural network acts as the



BIANCHI et al.: UAV LOCALIZATION USING AUTOENCODED SATELLITE IMAGES 3

encoder, compressing images down to some low-dimensional
bottleneck. A second network upsamples this bottleneck vector
back to an image with the same size as the original image.
Minimizing some loss function between the original image
and the recreated image, the network can learn to retain
the key features in the bottleneck. There has been lots of
work in this area, including new loss functions [18], [19],
adversarial autoencoders [20], and combining autoencoders
with neural autoregressive models [21]. In this work, we use
an autoencoder architecture based on [18] to compress our
images.

C. Kernels
Kernels, such as the inner-product or exponential kernel,

are often used for matching patches between images, such
as in [22], [23]. They provide a measure of the similarity
between the two patches, but they are not commonly used
for comparisons of whole images due to the high number of
pixels involved. We use kernels on the autoencoded represen-
tations of whole images. Since these autoencoded images are
small enough to quickly compute a kernel between them, it
eliminates the need for extracting and matching patches from
an image.

D. Learned Pose Estimation
Using learned methods to directly compute the poses of

objects in images, or the relative pose change between two
images has been the focus of many works [24]–[26]. However,
these approaches are limited by the available training data.
Real data is expensive to collect and label, and synthetic
data does not typically generalize directly to the real world.
Alternatively, Sundermeyer et al. [27] use a similar method to
what is proposed in this work to perform 6D Object Detection.
Instead of explicitly learning from 3D pose annotations during
training, they implicitly learn representations from rendered
3D model views. Using a denoising autoencoder, they generate
a codebook containing the encoded representations of tens
of thousands of rendered images of the desired object at
uniformly distributed poses. The same autoencoder is used to
encode a live image and a cosine similarity metric is used to
match the live image with the closest poses from the codebook.

III. METHODOLOGY

The proposed approach can be divided into several steps
as depicted in Figure 1. Offline, images are rendered from
GE around the desired flight path. Then an autoencoder is
trained for this specific path using these images. These images
are encoded and saved after passing through the trained
network. While the offline processing is significant, it only
needs to be completed once per path and would eliminate
the need for manual mapping flights before each autonomous
flight as in [5]. In the online component of the pipeline,
weights for a subset of these autoencoded reference images are
computed using an inner-product kernel computation with an
autoencoded live image. The localization and corresponding
covariance are then computed from these weights. Finally,
outlier rejection is performed based on the covariance estimate
from the previous step.

Fig. 3: On the left are real images collected by the UAV along
the path. On the right is the corresponding image after passing
through the autoencoder and decoder which were only trained
on GE images.

A. Pre-Flight Image Collection

Using a desired path, images are rendered from GE [1] at
the intended orientation every 0.5m along the path. Additional
images are rendered at 0.5m lateral offsets out to 5m to either
side of the path. This requires 42 images for each meter of
the path. This coverage could be modified based on expected
performance of the UAV. For example, if you are expecting
the UAV to operate in windy conditions more images could
be rendered further from the path. Regardless, this leads to a
high number of images for non-trivial path lengths. Storing
and comparing these images in full size would be infeasible.
The next step and key aspect of this method is to use an
autoencoder to compress the images to a low-dimensional
representation while maintaining the key features of each
image such that comparing the compressed images using a
kernel yields sensible results.

B. Autoencoder

With a focus on place-specific excellence, the autoencoder
is trained solely using the precollected images from GE for
that desired path. A new autoencoder would need to be trained
for each path. The autoencoder architecture is based on [18]
as implemented in [28]. The input is a 320 × 160 greyscale
GE image. The encoder is composed of six layers. Each of
the first five layers perform a 2D convolution with a stride
of two followed by a batch normalization layer. The number
of channels double as indicated in Figure 4. Finally, a linear
layer maps the output of the final convolution layer to the
bottleneck vector. Different sizes were experimented with for
the dimension of the bottleneck. A bottleneck of dimension
1000 was selected as it was the smallest size that could still
achieve the desired accuracy.

The decoder behaves opposite the encoder. A linear layer
first maps the bottleneck variable to 1024 channels. This is
then passed to the first of five layers, each of which performs



4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED FEBRUARY, 2021

upsampling by a factor of two, followed by convolution with a
stride of three, and batch normalization. The number of chan-
nels is halved in each layer until an output greyscale image
with the same dimension as the input image is generated. To
obtain the compressed image vector, the output after only the
encoder part of the network is used.

Fig. 4: The autoencoder architecture is based on [18]. It
uses traditional photometric loss between the input image and
the reconstructed image as well as skip losses between the
corresponding layers in the encoder and decoder.

The loss function used to train the network is a combination
of photometric loss between the input and output images, i.e.,
L = (Iinput − Ioutput)

2, and L2 loss between the outputs
of corresponding layers referred to as skip losses. These
additional skip losses are weighted with a value of 0.01
and encourage the decoder to learn the reverse behaviour of
the encoder and was found to improve performance on the
real image validation sets. The network was trained for 20
epochs with a learning rate of 1e-4. For the path used in

the experiments, the network was trained with approximately
48,000 images. On a Nvidia DGX Station using a single Tesla
V100 GPU training took around 20 hours to complete.

It is important to stress that the network is trained only
on images from GE, but it is still able to generalize to real-
world images with different lighting conditions. Thus it is able
to be trained before having to actually fly the path. Figure
3 shows some examples of real images reconstructed after
passing through the autoencoder. While the reconstructions are
not as sharp as the reconstruction of the training data as seen
in Figure 4, the main structures in each image are preserved.
For our application of comparing the encoded live image
to encoded reference images, the network achieves sufficient
generalization performance. It may be interesting for future
work to look into using data augmentation during training to
further improve generalization performance similar to [27].

C. Localizing Using Kernels

To minimize time spent loading the autoencoded GE refer-
ence images, all image vectors are stacked and loaded into a
1000 × N dimensional matrix denoted Yge, which is loaded
onto the GPU. Then, based on a prediction of the current
live image pose, Yge is indexed to include only the reference
images that are 4m ahead and behind along the path, which
is the same search area used in [8]. The live image is passed
through the trained autoencoder and the resulting compressed
1000×1 vector is denoted as y. The weights, w, are computed
for the subset of autoencoded GE reference images using a
basic inner-product kernel:

w = YT
gey. (1)

w contains a similarity measurement between the live image
and each of the reference images. Since there are 336 images
being used for comparison, many of these images have low,
but non-zero, weights. These weights tend to pull the mean
value towards the centre of the area covered by the reference
images. To prevent this and get a result closer to the images
with the highest weights, a new set of weights, wth, is created
by setting all values of the weights less than one standard
deviation of the max weight to zero. The thresholded weights
are then normalized:

w̄th =
wth∑
i wth,i

. (2)

The longitude and latitude coordinates of each reference
image are stacked in a 2 × N matrix Xge. The thresholded
weights are used to compute the localization for the longitude
and latitude according to:

x̂ =

[
x̂
ŷ

]
= Xgew̄th. (3)

The covariance is computed using the original weight values:

P =
∑
i

wi(xge,i − x̂)(xge,i − x̂)T . (4)

Some examples showing the localization, covariance, and
weights generated for each nearby GE reference image are
shown in Figure 8.



BIANCHI et al.: UAV LOCALIZATION USING AUTOENCODED SATELLITE IMAGES 5

Instead of rendering reference images at multiple headings
and including them in the previous computation, the heading
computation is performed after the above step. The reference
image with the largest weight is selected for comparison,
y?ge. The uncompressed live image is then rotated in 1◦

increments between -5◦and 5◦. All these rotated images are
autoencoded and stacked into an 1000 × 11 matrix, Yθ. The
kernel computation from (1) is repeated:

wθ = YT
θ y

?
ge. (5)

These weights are normalized, w̄θ, and then used to compute
a heading measurement following the same procedure as in
(3) using a stacked vector of the rotation values, xθ:

θ̂ = xTθ w̄θ. (6)

This mean heading value, θ̂, is then added to the heading of
the selected reference image, β, to get a global heading, θ̂+β.
While not included here, a similar process could be used to
get an estimate for altitude without having to render additional
reference images. The full localization is then:

p̂ =

 x̂
ŷ

θ̂ + β

 (7)

One of our earlier approaches for localization was to use the
position of the image with the highest similarity measurement.
This yielded fairly similar results to the weighted average
approach except that it was limited by the grid spacing of
the reference images and more susceptible to outliers.

Fig. 5: Plots of the RMSE for the longitude coordinates of the
sunrise test are shown here with accompanying 3σ uncertainty
envelope. The registrations that were rejected due to either
σlong or σlat > 5 are shown in red.

D. Outlier Rejection

Since we compute a covariance with our localization based
on the weights, we can also use this to reject outliers. When
the weights have a single narrow peak away from the edges of
the area covered by the reference images, the σ2

long and σ2
lat

values are small. When the weights are more spread out with
a less-well-defined peak, when there are multiple peaks, or
when the peak occurs very close to the edge of the reference
area, this results in larger values for σ2

long and σ2
lat. We reject

localizations that have either σlong or σlat greater than 5.
Figure 5 plots the RMSE for the longitude coordinates with

accompanying covariance. Rejected registrations are indicated
in red.

IV. EXPERIMENTAL SETUP

A. Image Registration on UTIAS Dataset

Image registration to obtain the longitude, latitude, and
heading was performed on the same dataset as in [8]. We do
not focus on estimating the roll, pitch, or altitude of the vehicle
as those can be measured by complementary sensors to vision.
The data was collected at UTIAS using a DJI Matrice 600
Pro multirotor UAV with a 3-axis DJI Ronin-MX gimbal (see
Figure 6). A StereoLabs ZED camera provides stereo images
at 10FPS. The RTK-GPS system and IMU provide the vehicle
pose for ground truth.

This dataset consists of six traversals of a 1132m path over
built-up areas with roads and buildings as well as large areas
of grass and trees. Each run captures the distinctive lighting
condition at different times of day: sunrise, morning, noon,
afternoon, evening, and sunset. These lighting conditions are
shown in Figure 2. The UAV flies at an altitude of 40m with a
constant heading and the camera pointed in the nadir direction.

There is an unknown offset between the RTK-GPS frame
and the GE frame. So 10% of the successful image registra-
tions are used to align the frames. These registrations are then
omitted from all error calculations.

V. RESULTS

Most vision-based localization methods rely on features.
Previously, Patel et al. [8] evaluated the ability of SURF
features to match between GE rendered images and live images
on the same path used here under various lighting conditions
using the VT&R framework in [5]. Using the GE images for
the teach pass and the live images for the repeat, features
were only capable of producing less than 7% successes per
repeat if a successful registration is defined as having greater
than 30 Maximum Likelihood Estimation Sample Consensus
(MLESAC) inliers. We are not currently aware of any works
localizing GE images to real UAV images at a similar altitude
and orientation as our flight path other than [8].

We are able to achieve comparable results with the MI-
based approach from [8] on the same dataset in 1% of the

Fig. 6: The dataset was collected by a 3-axis gimballed stereo
camera on a multirotor UAV.



6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED FEBRUARY, 2021

TABLE I: Comparison of Errors for Successful Registrations

Lighting
Condition

Registration
Success [%]

Successful Registrations RMSE
longitude [m] latitude [m] heading [degree]

Ours A Ours B MI [8] Ours A Ours B MI [8] Ours A Ours B MI [8] Ours A Ours B MI [8]
Sunrise 98.8 99.9 94.7 1.05 1.17 1.10 0.97 0.97 0.71 0.35 0.35 2.28
Morning 100 100 95.1 0.90 0.90 1.02 0.95 0.95 0.58 0.31 0.31 2.57
Noon 100 100 97.8 1.04 1.04 0.78 0.87 0.87 0.61 0.36 0.36 1.82
Afternoon 98.0 98.6 96.0 1.64 1.67 1.69 0.88 0.87 0.92 0.34 0.34 1.17
Evening 90.9 96.0 81.3 2.16 2.17 3.03 1.18 1.14 1.32 0.42 0.41 2.49
Sunset 97.4 98.7 87.5 1.37 1.48 1.95 0.96 0.94 1.12 0.36 0.36 2.64

computation time. In Table II, we present our RMSE for the
longitude, latitude, and heading for all registrations on each
of the six runs. We achieve lower errors as compared to the
results presented in [8]. We use the same search area as in [8]
to select our subset of reference images, which correspond to
a maximum RMSE of 6.4m.

In Table I, the error results from only successful reg-
istrations are compared against the errors from successful
registrations in [8]. For "Ours A", we use the outlier rejection
scheme described in Section III-D to reject registrations with
a high covariance estimate. For "Ours B", we use the outlier
rejection from [8] along with our localization method. In [8],
registrations are deemed unsuccessful if the localization is too
far from the previous estimate. There is minimal difference in
the performance between "Ours A" and "Ours B". The benefit
of our outlier rejection scheme is that it is based purely on
the covariance of the localization result and does not require
a prior estimate.

In comparison with [8], for all but the noon lighting
condition we achieve lower RMSE error on the longitude
coordinate. For the latitude coordinate, we have lower RMSE
error for three of the runs and for the other three runs we are
an average of 0.3m higher. Our success rate of registrations
is higher for all the lighting conditions. Particularly in the
evening and sunset runs, we see an increase of ~10% in the
success rate and a decrease in RMSE.

The most significant advantage of our method over [8] is
the substantial reduction in runtime. Both methods were run
on a Lenovo P52 laptop with an Intel i7 8th generation core,
a Nvidia Quadro P2000 GPU, and 32 GB of RAM. Most
of the MI registrations took between 5 to 35 seconds per
frame, whereas our approach only took between 0.09 and 0.15
seconds. We were able to eliminate the costly optimization
component from [8], which requires warping the image and
recomputing the MI up to 150 times per registration. Instead,
by rendering more reference images at a finer grid spacing and
using the mean of the kernel weights to interpolate between
them, we were able to achieve similar results at greatly reduced

TABLE II: Comparison of Errors for All Registrations

Lighting
Condition

All Registrations RMSE
longitude [m] latitude [m] yaw [degree]

Ours MI [8] Ours MI [8] Ours MI [8]
Sunrise 1.18 1.87 0.98 1.47 0.35 2.80
Morning 0.90 2.24 0.95 1.39 0.31 2.97
Noon 1.04 1.26 0.87 1.02 0.36 2.70
Afternoon 1.84 2.14 0.90 1.57 0.35 2.63
Evening 2.53 4.09 1.19 3.63 0.42 5.25
Sunset 1.64 3.03 0.97 1.95 0.37 3.06

(a) Morning

(b) Evening

Fig. 7: Registration results showing our best (morning) and
worst (evening) localization results. Grey dots indicate the
reference image positions. Green dots indicate the ground truth
live image positions. Blue dots indicate accepted localizations
and red dots indicate rejected localizations. Shadows on the
opposite sides of objects as compared to the GE reference
images cause higher errors and more rejected registrations in
the evening run.

computation time.
Both approaches are still limited by the storage available

on the UAV. By autoencoding the reference images, we only
need 1000 numbers to represent each image. Recording these
numbers as half precision floats only requires 4.2 kB per
image. In [8], the reference images are stored as 560×315 4-bit



BIANCHI et al.: UAV LOCALIZATION USING AUTOENCODED SATELLITE IMAGES 7

Fig. 8: An example frame from each of the three areas indicated in Figure 7 for the morning lighting condition is shown at
the top of this figure and for the evening lighting condition on the bottom. For each lighting condition, the top row shows the
overlay between the live image and the GE reference image closest to the localization. The heat maps plotted in the bottom
row show the value of the weights for each of the nearby GE reference images with yellow indicating a higher weight. The
resulting localization and covariance is shown in green for successful registrations and in red for rejected registrations. The
ground truth is shown in magenta.

greyscale images requiring approximately 11 kB of storage
which is almost three times as large. As a result of this
reduction, we are able to render more images per meter of the
path while still having a lower per meter storage cost, 0.241
Mb compared to 0.722 Mb. Encoding the images also makes
the base comparison computation faster. An inner-product
computation between two 1000 dim vectors takes on average
0.26ms, whereas a MI computation between two 176,400
pixel images takes on average 109ms. The disadvantage of
our approach is that in addition to the autoencoded reference
images, we must also store the weights for the trained neural
networks in order to encode the live image on board. However,
this is a fixed cost that does not increase with the length of
the path. So for the 1.1km path in the dataset used, our total
storage is still less than what is used in [8]. Computation and
storage comparisons are summarized in Table III.

We plot our registrations on the run with our best local-

ization results, morning, in Figure 7a and on the run with
the worst localization results, evening, in Figure 7b. The
ground truth from the RTK is shown by the green dots.
Successful registrations are indicated by blue dots and rejected
registrations are indicated by red dots. The grey dots show the
positions of the GE reference images. The localizations on
the morning lighting condition likely perform the best because
the shadow conditions match those on the GE images. In the
evening dataset, the shadows are on the opposite sides of the
objects as compared to the GE images. Figure 2 shows an
example image from each of the six lighting conditions for
comparison.

We show an example from three different areas along the
path for the morning and evening lighting conditions in Figure
8. The top row for each lighting condition shows an overlay
of the live image and the GE reference image closest to the
localization. The bottom row shows a heat map of the value of



8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED FEBRUARY, 2021

TABLE III: Runtime and Storage Requirements Comparison

Comparison Method Kernel (Ours) MI [8]

Average Runtime
for 1.1 km Path 221 s 18422 s

Average Time per Frame 0.11 s 9.23 s

Average Time per
Comparison Computation 0.26 ms 109 ms

Storage Cost per Image 4.2 kB 11 kB

Storage Cost per m of Path 0.241 Mb 0.722 Mb

Fixed Storage Cost 158 Mb 0 Mb

Total Cost for 1.1km Path 423 Mb 794 Mb

the weights of the nearby GE reference images computed from
an inner-product with the live image. The resulting localization
from the mean of the thresholded weights and the covariance
estimate are plotted as well. For successful registrations, the
covariance envelope is smaller. For the rejected localizations
(i.e., evening B and C), shadows cause the highest weights to
occur on misaligned images at the very edge of the reference
images. In these cases, the covariance that results from the
weights is larger than in the successful registrations, very
elongated, and does not pass our threshold for outlier rejection.

VI. CONCLUSIONS AND FUTURE WORK

We presented a method for localizing live images captured
from a UAV under six different lighting conditions to preren-
dered images from GE. Compared to the best existing method,
we are able to achieve a similar level of accuracy at 1% of
the computation time. Our method also has a lower storage
requirement per length of path making it an ideal candidate for
running on board the UAV in future work. All preprocessing
can be completed offline and grants the UAV the ability to
traverse new areas without having to manually fly and map
them first. Since our method is able to match images across
large periods of time (the GE images are at least two years
older), it could also be used for repeated traversals of the same
path over large periods of time. Future work aims at integrating
our method into a filtering pipeline such that it can be used
in the loop on board the UAV.

ACKNOWLEDGMENT

This work was funded by NSERC Canada Graduate
Scholarship-Master’s, Defence Research and Development
Canada, Drone Delivery Canada, the Centre for Aerial
Robotics Research and Education, University of Toronto, and
the Vector Scholarship in Artificial Intelligence.

REFERENCES

[1] Google, Map Data: Google, Landsat/Copernicus.
[2] M. Blöesch, S. Weiss, D. Scaramuzza, and R. Siegwart, “Vision based

mav navigation in unknown and unstructured environments,” in Proc. of
the Intl. Conference on Robotics and Automation, 2010, p. 21–28.

[3] S. Shen, N. Michael, and V. Kumar, “Tightly-coupled monocular visual-
inertial fusion for autonomous flight of rotorcraft mavs,” in Intl. Con-
ference on Robotics and Automation. IEEE, 2015, pp. 5303–5310.

[4] S. Weiss, M. W. Achtelik, S. Lynen, M. C. Achtelik, L. Kneip, M. Chli,
and R. Siegwart, “Monocular vision for long-term micro aerial vehicle
state estimation: A compendium,” Journal of Field Robotics, vol. 30,
no. 5, pp. 803–891, 2013.

[5] M. Warren, M. Greeff, B. Patel, J. Collier, A. P. Schoellig, and T. D.
Barfoot, “There’s no place like home: Visual teach and repeat for
emergency return of multirotor uavs during gps failure,” IEEE Robotics
and Automation Letters, vol. 4, no. 1, pp. 161–168, 2019.

[6] P. Furgale and T. D. Barfoot, “Visual teach and repeat for long range
rover autonomy,” Journal of Field Robotics, vol. 27, no. 5, pp. 534–560,
2010.

[7] H. Bay, A. Ess, T. Tuytelaars, and L. V. Gool, “Speeded-up robust
features (surf),” Computer Vision Image Understanding, vol. 110, no. 3,
pp. 346–359, 2008.

[8] B. Patel, T. D. Barfoot, and A. P. Schoellig, “Visual localization with
google earth images for robust global pose estimation of uavs,” in Proc.
of the IEEE Intl. Conference on Robotics and Automation, 2020.

[9] G. Conte and P. Doherty, “An integrated uav navigation system based
on aerial image matching,” in IEEE Aerospace Conference Proceedings,
2008.

[10] A. Nassar, K. Amer, R. ElHakim, and E. M., “A deep cnn-based
framework for enhanced aerial imagery registration with applications
to uav geolocalization,” in The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR) Workshops, 2018.

[11] P. Agarwal and L. Spinello, “Metric localization using google street
view,” in Proc. of the IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2015, pp. 3111–3118.

[12] A. L. Majdik, Y. Albers-Schoenberg, and D. Scaramuzza, “Mav urban
localization from google street view data,” in Proc. of the Intl. Confer-
ence on Intelligent Robots and Systems, 2013, pp. 3979–3986.

[13] A. L. Majdik, D. Verda, Y. Albers-Schoenberg, and D. Scaramuzza,
“Air-ground matching: Appearance-based gps-denied urban localization
of micro aerial vehicles,” Journal of Field Robotics, 2015.

[14] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”
Intl. Journal of Computer Vision, vol. 60, no. 2, pp. 91–110, 2004.

[15] G. Pascoe, W. Maddern, and P. Newman, “Robust direct visual local-
isation using normalised information distance,” British Machine Vision
Conference (BMVC), pp. 70.1–70.13, 2015.

[16] G. Pascoe, W. Maddern, A. D. Stewart, and P. Newman, “Farlap: Fast
robust localisation using appearance priors,” in Proc. of the IEEE Intl.
Conference on Robotics and Automation, 2015, pp. 6366–6373.

[17] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” in
Proc. of the Intl. Conference on Learning Representations), 2014.

[18] X. Hou, L. Shen, K. Sun, and G. Qiu, “Deep feature consistent
variational autoencoder,” in Applications of Computer Vision (WACV)
IEEE Winter Conference, 2017, pp. 1133–1141.

[19] K. Ridgeway, J. Snell, B. Roads, R. Zemel, and M. Mozer, “Learning
to generate images with perceptual similarity metrics,” in International
Conference on Image Processing, 2015.

[20] A. Makhzani, J. Shlens, N. Jaitly, and I. Goodfellow, “Adversarial
autoencoders,” Intl. Conference on Learning Representations, 2015.

[21] X. Chen, D. P. Kingma, T. Salimans, Y. Duan, P. Dhariwal, J. Schulman,
I. Sutskever, and P. Abbeel, “Adversarial autoencoders,” International
Conference on Learning Representations, 2016.

[22] K. Grauman and T. Darrell, “The pyramid match kernel: Discriminative
classification with sets of image features,” in Proc. of the IEEE Intl.
Conference on Computer Vision, 2005, pp. 1458–1465.

[23] J. Zhang, M. Marszalek, S. Lazebnik, and C. Schomid, “Local features
and kernels for classification of texture and object categories: A com-
prehensive study,” Intl. Journal of Computer Vision, vol. 73, no. 2, pp.
213–238, 2007.

[24] I. Melekhov, J. Kannala, and E. Rahtu, “Relative camera pose estimation
using convolutional neural networks,” in International Conference on
Advanced Concepts for Intelligent Vision Systems, 2017, pp. 675–687.

[25] A. Kendall, M. Grimes, and R. Cipolla, “Posenet: A convolutional
network for real-time 6-dof camera relocalization,” in Proc. of the IEEE
Intl. Conference on Computer Vision, 2015, pp. 2938–2946.

[26] B. Tekin, S. N. Sinha, and P. Fua, “Real-time seamless single shot
6d object pose prediction,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2018, pp. 292–301.

[27] M. Sundermeyer, Z. Marton, M. Durner, M. Brucker, and R. Triebel,
“Implicit 3d orientationlearning for 6d object detection from rgb im-
ages,” in Proc. of the European Conference on Computer Vision (EECV),
2018, pp. 699–715.

[28] H. Bai, “Variational autoencoder for face image generation in pytorch,”
2020, https://github.com/bhpfelix/Variational-Autoencoder-PyTorch.


	I Introduction
	II Related Work
	II-A Aerial Visual Localization
	II-B Autoencoders
	II-C Kernels
	II-D Learned Pose Estimation

	III Methodology
	III-A Pre-Flight Image Collection
	III-B Autoencoder
	III-C Localizing Using Kernels
	III-D Outlier Rejection

	IV EXPERIMENTAL SETUP
	IV-A Image Registration on UTIAS Dataset

	V RESULTS
	VI CONCLUSIONS AND FUTURE WORK
	References

