is_assignments/a1/code/main_t2.py

216 lines
8.2 KiB
Python

import pygad
import numpy as np
import random
# Create a maze class
global maze_ix
def fitness_func(path, solution_idx):
maze = mazes[maze_ix]
fitness = np.sum(path * maze.punish_matrix.reshape(-1))
path = path.reshape(maze.punish_matrix.shape)
if path[maze.start_pos] == 0:
fitness -= 10000
if path[maze.end_pos] == 0:
fitness -= 10000
if path[maze.start_pos] == 1 and path[maze.end_pos] == 1:
fitness += 300
# Check if there is a valid path
complete_path = maze.walk_through_maze(path, critical_situation=False)
complete_path_len = len(complete_path)
# Set the first path found as the shotest one
if maze.shortest_path == [] and complete_path_len > 0:
maze.adjust_weights(complete_path)
print('First path found')
maze.shortest_path = complete_path
#Check if the current path is shorter than the shortest one
if complete_path_len != 0 and complete_path_len < len(maze.shortest_path):
print('Found a better path')
maze.shortest_path = complete_path
maze.adjust_weights(complete_path)
maze.ga_iteration += 1
return fitness
def on_mutation(generations, ga_instance):
maze = mazes[maze_ix]
# Firtly find the instances where there are no walls
no_wall_instances = np.where(maze.mutation_matrix.reshape(-1) == 1)[0]
wall_instances = np.where(maze.mutation_matrix.reshape(-1) == 0)[0]
# Loop through the population
for i in range(len(generations)):
# select random number of the instances where there are walls
random_false_instances = np.random.choice(wall_instances, size=int(len(no_wall_instances)* random.uniform(0.01, 1.0)), replace=False)
# Then randomly select random number of the instances where there are no walls
random_true_instances = np.random.choice(no_wall_instances, size=int(len(no_wall_instances)* random.uniform(0.01, 1.0)), replace=False)
# Then apply those values to generation
generations[i][random_true_instances] = 1
generations[i][random_false_instances] = 0
return generations
class Maze:
def __init__(self, maze, start_pos, end_pos, punish_matrix, mutation_matrix, shortest_path):
self.maze = maze
self.start_pos = start_pos
self.end_pos = end_pos
self.punish_matrix = punish_matrix
self.mutation_matrix = mutation_matrix
self.shortest_path = shortest_path
self.ga_iteration = 0
self.initial_population_size = 400
def run_genetic_algorithm(self):
# Set global punish matrix
punish_matrix = self.punish_matrix
maze = self.maze
ga_instance = pygad.GA(num_genes=punish_matrix.size,
num_generations=3,
sol_per_pop=self.initial_population_size,
num_parents_mating=200,
gene_type=np.uint8,
fitness_func=fitness_func,
parent_selection_type="random",
keep_parents=2,
allow_duplicate_genes=True,
parallel_processing=1,
mutation_type=on_mutation,
# initial_population=self.generate_initial_population(),
gene_space=[0, 1])
ga_instance.run()
solution, solution_fitness, solution_idx = ga_instance.best_solution()
print("The shortest path is", self.shortest_path, self.ga_iteration)
self.print_shortest_path()
def walk_through_maze(self, solution_matrix, critical_situation):
queue = [[self.start_pos]]
def add_to_queue(full_path, x, y):
if (x,y) not in full_path:
full_path = full_path.copy()
full_path.append((x, y))
queue.append(full_path)
while queue != []:
full_path = queue.pop()
x, y = full_path[-1]
if(self.maze[x][y] == 'E'):
return full_path
if x + 1 < len(self.maze) :
if solution_matrix[x+1, y] == 1 and (critical_situation or (self.maze[x+1][y] == "." or self.maze[x+1][y] == "E")):
add_to_queue(full_path, x+1, y)
if x - 1 >= 0:
if solution_matrix[x-1, y] == 1 and (critical_situation or (self.maze[x-1][y] == "." or self.maze[x-1][y] == "E")):
add_to_queue(full_path, x-1, y)
if y + 1 < len(self.maze) :
if solution_matrix[x, y+1] == 1 and (critical_situation or(self.maze[x][y+1] == "." or self.maze[x][y+1] == "E")):
add_to_queue(full_path, x, y+1)
if y - 1 >= 0:
if solution_matrix[x, y-1] == 1 and (critical_situation or (self.maze[x][y-1] == "." or self.maze[x][y-1] == "E")):
add_to_queue(full_path, x, y-1)
return []
def adjust_weights(self, found_path):
for (x, y) in found_path:
self.punish_matrix[x,y] += 2000
def print_maze(self):
for row in self.maze:
print(' '.join(row))
def print_shortest_path(self):
for (x, y) in self.shortest_path:
lst = list(self.maze[x])
lst[y] = 'X'
self.maze[x] = ''.join(lst)
self.print_maze()
def generate_initial_population(self):
# Generate initial population
# Firtly find the instances where there are no walls
no_wall_instances = np.where(self.mutation_matrix.reshape(-1) == 1)[0]
wall_instances = np.where(self.mutation_matrix.reshape(-1) == 0)[0]
initial_population = np.random.choice([0, 1], size=(self.punish_matrix.size, self.initial_population_size))
for population in initial_population:
# select random number of the instances where there are walls
random_false_instances = np.random.choice(wall_instances, size=int(len(no_wall_instances)* random.uniform(0.5, 1.0)), replace=False)
# Then randomly select random number of the instances where there are no walls
random_true_instances = np.random.choice(no_wall_instances, size=int(len(no_wall_instances)* random.uniform(0.5, 1.0)), replace=False)
# Then apply those values to generation
population[random_true_instances] = 1
population[random_false_instances] = 0
print(initial_population)
return initial_population
def read_mazes():
with open('./mazes.r', 'r') as f:
mazes = []
maze = []
for line in f:
if line == '\n':
mazes.append(maze)
maze = []
continue
maze.append(line.strip())
return mazes
def prepare_maze(maze_ix, mazes):
maze = mazes[maze_ix]
punish_matrix = np.zeros((len(maze), len(maze)), dtype=np.int64)
mutation_matrix = np.zeros((len(maze), len(maze)), dtype=np.uint8)
start_index = 0, 0
end_index = 0, 0
treasures = []
# Initialize punish matrix and find start and end index
for i, x in enumerate(maze):
for j, y in enumerate(x):
if y == "#":
punish_matrix[i, j] = -1000
mutation_matrix[i, j] = 0
if y == ".":
punish_matrix[i, j] = +1000
mutation_matrix[i, j] = 1
if y == "S":
start_index = i, j
mutation_matrix[i, j] = 1
if y == "E":
end_index = i, j
mutation_matrix[i, j] = 1
if y == "T":
mutation_matrix[i, j] = 2
treasures.append((i, j))
# Create maze class
maze = Maze(maze, start_index, end_index, punish_matrix, mutation_matrix, [])
return maze
def main():
# Read mazes
global maze_ix, mazes
mazes = []
text_mazes = read_mazes()
for i in range(len(text_mazes)):
print('MAZE: ', i)
maze_ix = i
maze = prepare_maze(i, text_mazes)
mazes.append(maze)
maze.run_genetic_algorithm()
if __name__ == "__main__":
main()