is_assignments/a2/code/.venv/lib/python3.10/site-packages/scikitplot/metrics.py

1223 lines
46 KiB
Python
Raw Normal View History

2022-12-19 10:09:00 +01:00
"""
The :mod:`scikitplot.metrics` module includes plots for machine learning
evaluation metrics e.g. confusion matrix, silhouette scores, etc.
"""
from __future__ import absolute_import, division, print_function, \
unicode_literals
import itertools
import matplotlib.pyplot as plt
import numpy as np
from sklearn.metrics import confusion_matrix
from sklearn.preprocessing import label_binarize
from sklearn.preprocessing import LabelEncoder
from sklearn.metrics import roc_curve
from sklearn.metrics import auc
from sklearn.metrics import precision_recall_curve
from sklearn.metrics import average_precision_score
from sklearn.utils.multiclass import unique_labels
from sklearn.metrics import silhouette_score
from sklearn.metrics import silhouette_samples
from sklearn.calibration import calibration_curve
from sklearn.utils import deprecated
from scipy import interp
from scikitplot.helpers import binary_ks_curve, validate_labels
from scikitplot.helpers import cumulative_gain_curve
def plot_confusion_matrix(y_true, y_pred, labels=None, true_labels=None,
pred_labels=None, title=None, normalize=False,
hide_zeros=False, hide_counts=False, x_tick_rotation=0, ax=None,
figsize=None, cmap='Blues', title_fontsize="large",
text_fontsize="medium"):
"""Generates confusion matrix plot from predictions and true labels
Args:
y_true (array-like, shape (n_samples)):
Ground truth (correct) target values.
y_pred (array-like, shape (n_samples)):
Estimated targets as returned by a classifier.
labels (array-like, shape (n_classes), optional): List of labels to
index the matrix. This may be used to reorder or select a subset
of labels. If none is given, those that appear at least once in
``y_true`` or ``y_pred`` are used in sorted order. (new in v0.2.5)
true_labels (array-like, optional): The true labels to display.
If none is given, then all of the labels are used.
pred_labels (array-like, optional): The predicted labels to display.
If none is given, then all of the labels are used.
title (string, optional): Title of the generated plot. Defaults to
"Confusion Matrix" if `normalize` is True. Else, defaults to
"Normalized Confusion Matrix.
normalize (bool, optional): If True, normalizes the confusion matrix
before plotting. Defaults to False.
hide_zeros (bool, optional): If True, does not plot cells containing a
value of zero. Defaults to False.
hide_counts (bool, optional): If True, doe not overlay counts.
Defaults to False.
x_tick_rotation (int, optional): Rotates x-axis tick labels by the
specified angle. This is useful in cases where there are numerous
categories and the labels overlap each other.
ax (:class:`matplotlib.axes.Axes`, optional): The axes upon which to
plot the curve. If None, the plot is drawn on a new set of axes.
figsize (2-tuple, optional): Tuple denoting figure size of the plot
e.g. (6, 6). Defaults to ``None``.
cmap (string or :class:`matplotlib.colors.Colormap` instance, optional):
Colormap used for plotting the projection. View Matplotlib Colormap
documentation for available options.
https://matplotlib.org/users/colormaps.html
title_fontsize (string or int, optional): Matplotlib-style fontsizes.
Use e.g. "small", "medium", "large" or integer-values. Defaults to
"large".
text_fontsize (string or int, optional): Matplotlib-style fontsizes.
Use e.g. "small", "medium", "large" or integer-values. Defaults to
"medium".
Returns:
ax (:class:`matplotlib.axes.Axes`): The axes on which the plot was
drawn.
Example:
>>> import scikitplot as skplt
>>> rf = RandomForestClassifier()
>>> rf = rf.fit(X_train, y_train)
>>> y_pred = rf.predict(X_test)
>>> skplt.metrics.plot_confusion_matrix(y_test, y_pred, normalize=True)
<matplotlib.axes._subplots.AxesSubplot object at 0x7fe967d64490>
>>> plt.show()
.. image:: _static/examples/plot_confusion_matrix.png
:align: center
:alt: Confusion matrix
"""
y_true = np.asarray(y_true)
y_pred = np.asarray(y_pred)
if ax is None:
fig, ax = plt.subplots(1, 1, figsize=figsize)
cm = confusion_matrix(y_true, y_pred, labels=labels)
if labels is None:
classes = unique_labels(y_true, y_pred)
else:
classes = np.asarray(labels)
if normalize:
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
cm = np.around(cm, decimals=2)
cm[np.isnan(cm)] = 0.0
if true_labels is None:
true_classes = classes
else:
validate_labels(classes, true_labels, "true_labels")
true_label_indexes = np.in1d(classes, true_labels)
true_classes = classes[true_label_indexes]
cm = cm[true_label_indexes]
if pred_labels is None:
pred_classes = classes
else:
validate_labels(classes, pred_labels, "pred_labels")
pred_label_indexes = np.in1d(classes, pred_labels)
pred_classes = classes[pred_label_indexes]
cm = cm[:, pred_label_indexes]
if title:
ax.set_title(title, fontsize=title_fontsize)
elif normalize:
ax.set_title('Normalized Confusion Matrix', fontsize=title_fontsize)
else:
ax.set_title('Confusion Matrix', fontsize=title_fontsize)
image = ax.imshow(cm, interpolation='nearest', cmap=plt.cm.get_cmap(cmap))
plt.colorbar(mappable=image)
x_tick_marks = np.arange(len(pred_classes))
y_tick_marks = np.arange(len(true_classes))
ax.set_xticks(x_tick_marks)
ax.set_xticklabels(pred_classes, fontsize=text_fontsize,
rotation=x_tick_rotation)
ax.set_yticks(y_tick_marks)
ax.set_yticklabels(true_classes, fontsize=text_fontsize)
thresh = cm.max() / 2.
if not hide_counts:
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
if not (hide_zeros and cm[i, j] == 0):
ax.text(j, i, cm[i, j],
horizontalalignment="center",
verticalalignment="center",
fontsize=text_fontsize,
color="white" if cm[i, j] > thresh else "black")
ax.set_ylabel('True label', fontsize=text_fontsize)
ax.set_xlabel('Predicted label', fontsize=text_fontsize)
ax.grid(False)
return ax
@deprecated('This will be removed in v0.5.0. Please use '
'scikitplot.metrics.plot_roc instead.')
def plot_roc_curve(y_true, y_probas, title='ROC Curves',
curves=('micro', 'macro', 'each_class'),
ax=None, figsize=None, cmap='nipy_spectral',
title_fontsize="large", text_fontsize="medium"):
"""Generates the ROC curves from labels and predicted scores/probabilities
Args:
y_true (array-like, shape (n_samples)):
Ground truth (correct) target values.
y_probas (array-like, shape (n_samples, n_classes)):
Prediction probabilities for each class returned by a classifier.
title (string, optional): Title of the generated plot. Defaults to
"ROC Curves".
curves (array-like): A listing of which curves should be plotted on the
resulting plot. Defaults to `("micro", "macro", "each_class")`
i.e. "micro" for micro-averaged curve, "macro" for macro-averaged
curve
ax (:class:`matplotlib.axes.Axes`, optional): The axes upon which to
plot the curve. If None, the plot is drawn on a new set of axes.
figsize (2-tuple, optional): Tuple denoting figure size of the plot
e.g. (6, 6). Defaults to ``None``.
cmap (string or :class:`matplotlib.colors.Colormap` instance, optional):
Colormap used for plotting the projection. View Matplotlib Colormap
documentation for available options.
https://matplotlib.org/users/colormaps.html
title_fontsize (string or int, optional): Matplotlib-style fontsizes.
Use e.g. "small", "medium", "large" or integer-values. Defaults to
"large".
text_fontsize (string or int, optional): Matplotlib-style fontsizes.
Use e.g. "small", "medium", "large" or integer-values. Defaults to
"medium".
Returns:
ax (:class:`matplotlib.axes.Axes`): The axes on which the plot was
drawn.
Example:
>>> import scikitplot as skplt
>>> nb = GaussianNB()
>>> nb = nb.fit(X_train, y_train)
>>> y_probas = nb.predict_proba(X_test)
>>> skplt.metrics.plot_roc_curve(y_test, y_probas)
<matplotlib.axes._subplots.AxesSubplot object at 0x7fe967d64490>
>>> plt.show()
.. image:: _static/examples/plot_roc_curve.png
:align: center
:alt: ROC Curves
"""
y_true = np.array(y_true)
y_probas = np.array(y_probas)
if 'micro' not in curves and 'macro' not in curves and \
'each_class' not in curves:
raise ValueError('Invalid argument for curves as it '
'only takes "micro", "macro", or "each_class"')
classes = np.unique(y_true)
probas = y_probas
fpr = dict()
tpr = dict()
roc_auc = dict()
for i in range(len(classes)):
fpr[i], tpr[i], _ = roc_curve(y_true, probas[:, i],
pos_label=classes[i])
roc_auc[i] = auc(fpr[i], tpr[i])
# Compute micro-average ROC curve and ROC area
micro_key = 'micro'
i = 0
while micro_key in fpr:
i += 1
micro_key += str(i)
y_true = label_binarize(y_true, classes=classes)
if len(classes) == 2:
y_true = np.hstack((1 - y_true, y_true))
fpr[micro_key], tpr[micro_key], _ = roc_curve(y_true.ravel(),
probas.ravel())
roc_auc[micro_key] = auc(fpr[micro_key], tpr[micro_key])
# Compute macro-average ROC curve and ROC area
# First aggregate all false positive rates
all_fpr = np.unique(np.concatenate([fpr[x] for x in range(len(classes))]))
# Then interpolate all ROC curves at this points
mean_tpr = np.zeros_like(all_fpr)
for i in range(len(classes)):
mean_tpr += interp(all_fpr, fpr[i], tpr[i])
# Finally average it and compute AUC
mean_tpr /= len(classes)
macro_key = 'macro'
i = 0
while macro_key in fpr:
i += 1
macro_key += str(i)
fpr[macro_key] = all_fpr
tpr[macro_key] = mean_tpr
roc_auc[macro_key] = auc(fpr[macro_key], tpr[macro_key])
if ax is None:
fig, ax = plt.subplots(1, 1, figsize=figsize)
ax.set_title(title, fontsize=title_fontsize)
if 'each_class' in curves:
for i in range(len(classes)):
color = plt.cm.get_cmap(cmap)(float(i) / len(classes))
ax.plot(fpr[i], tpr[i], lw=2, color=color,
label='ROC curve of class {0} (area = {1:0.2f})'
''.format(classes[i], roc_auc[i]))
if 'micro' in curves:
ax.plot(fpr[micro_key], tpr[micro_key],
label='micro-average ROC curve '
'(area = {0:0.2f})'.format(roc_auc[micro_key]),
color='deeppink', linestyle=':', linewidth=4)
if 'macro' in curves:
ax.plot(fpr[macro_key], tpr[macro_key],
label='macro-average ROC curve '
'(area = {0:0.2f})'.format(roc_auc[macro_key]),
color='navy', linestyle=':', linewidth=4)
ax.plot([0, 1], [0, 1], 'k--', lw=2)
ax.set_xlim([0.0, 1.0])
ax.set_ylim([0.0, 1.05])
ax.set_xlabel('False Positive Rate', fontsize=text_fontsize)
ax.set_ylabel('True Positive Rate', fontsize=text_fontsize)
ax.tick_params(labelsize=text_fontsize)
ax.legend(loc='lower right', fontsize=text_fontsize)
return ax
def plot_roc(y_true, y_probas, title='ROC Curves',
plot_micro=True, plot_macro=True, classes_to_plot=None,
ax=None, figsize=None, cmap='nipy_spectral',
title_fontsize="large", text_fontsize="medium"):
"""Generates the ROC curves from labels and predicted scores/probabilities
Args:
y_true (array-like, shape (n_samples)):
Ground truth (correct) target values.
y_probas (array-like, shape (n_samples, n_classes)):
Prediction probabilities for each class returned by a classifier.
title (string, optional): Title of the generated plot. Defaults to
"ROC Curves".
plot_micro (boolean, optional): Plot the micro average ROC curve.
Defaults to ``True``.
plot_macro (boolean, optional): Plot the macro average ROC curve.
Defaults to ``True``.
classes_to_plot (list-like, optional): Classes for which the ROC
curve should be plotted. e.g. [0, 'cold']. If given class does not exist,
it will be ignored. If ``None``, all classes will be plotted. Defaults to
``None``
ax (:class:`matplotlib.axes.Axes`, optional): The axes upon which to
plot the curve. If None, the plot is drawn on a new set of axes.
figsize (2-tuple, optional): Tuple denoting figure size of the plot
e.g. (6, 6). Defaults to ``None``.
cmap (string or :class:`matplotlib.colors.Colormap` instance, optional):
Colormap used for plotting the projection. View Matplotlib Colormap
documentation for available options.
https://matplotlib.org/users/colormaps.html
title_fontsize (string or int, optional): Matplotlib-style fontsizes.
Use e.g. "small", "medium", "large" or integer-values. Defaults to
"large".
text_fontsize (string or int, optional): Matplotlib-style fontsizes.
Use e.g. "small", "medium", "large" or integer-values. Defaults to
"medium".
Returns:
ax (:class:`matplotlib.axes.Axes`): The axes on which the plot was
drawn.
Example:
>>> import scikitplot as skplt
>>> nb = GaussianNB()
>>> nb = nb.fit(X_train, y_train)
>>> y_probas = nb.predict_proba(X_test)
>>> skplt.metrics.plot_roc(y_test, y_probas)
<matplotlib.axes._subplots.AxesSubplot object at 0x7fe967d64490>
>>> plt.show()
.. image:: _static/examples/plot_roc_curve.png
:align: center
:alt: ROC Curves
"""
y_true = np.array(y_true)
y_probas = np.array(y_probas)
classes = np.unique(y_true)
probas = y_probas
if classes_to_plot is None:
classes_to_plot = classes
if ax is None:
fig, ax = plt.subplots(1, 1, figsize=figsize)
ax.set_title(title, fontsize=title_fontsize)
fpr_dict = dict()
tpr_dict = dict()
indices_to_plot = np.in1d(classes, classes_to_plot)
for i, to_plot in enumerate(indices_to_plot):
fpr_dict[i], tpr_dict[i], _ = roc_curve(y_true, probas[:, i],
pos_label=classes[i])
if to_plot:
roc_auc = auc(fpr_dict[i], tpr_dict[i])
color = plt.cm.get_cmap(cmap)(float(i) / len(classes))
ax.plot(fpr_dict[i], tpr_dict[i], lw=2, color=color,
label='ROC curve of class {0} (area = {1:0.2f})'
''.format(classes[i], roc_auc))
if plot_micro:
binarized_y_true = label_binarize(y_true, classes=classes)
if len(classes) == 2:
binarized_y_true = np.hstack(
(1 - binarized_y_true, binarized_y_true))
fpr, tpr, _ = roc_curve(binarized_y_true.ravel(), probas.ravel())
roc_auc = auc(fpr, tpr)
ax.plot(fpr, tpr,
label='micro-average ROC curve '
'(area = {0:0.2f})'.format(roc_auc),
color='deeppink', linestyle=':', linewidth=4)
if plot_macro:
# Compute macro-average ROC curve and ROC area
# First aggregate all false positive rates
all_fpr = np.unique(np.concatenate([fpr_dict[x] for x in range(len(classes))]))
# Then interpolate all ROC curves at this points
mean_tpr = np.zeros_like(all_fpr)
for i in range(len(classes)):
mean_tpr += interp(all_fpr, fpr_dict[i], tpr_dict[i])
# Finally average it and compute AUC
mean_tpr /= len(classes)
roc_auc = auc(all_fpr, mean_tpr)
ax.plot(all_fpr, mean_tpr,
label='macro-average ROC curve '
'(area = {0:0.2f})'.format(roc_auc),
color='navy', linestyle=':', linewidth=4)
ax.plot([0, 1], [0, 1], 'k--', lw=2)
ax.set_xlim([0.0, 1.0])
ax.set_ylim([0.0, 1.05])
ax.set_xlabel('False Positive Rate', fontsize=text_fontsize)
ax.set_ylabel('True Positive Rate', fontsize=text_fontsize)
ax.tick_params(labelsize=text_fontsize)
ax.legend(loc='lower right', fontsize=text_fontsize)
return ax
def plot_ks_statistic(y_true, y_probas, title='KS Statistic Plot',
ax=None, figsize=None, title_fontsize="large",
text_fontsize="medium"):
"""Generates the KS Statistic plot from labels and scores/probabilities
Args:
y_true (array-like, shape (n_samples)):
Ground truth (correct) target values.
y_probas (array-like, shape (n_samples, n_classes)):
Prediction probabilities for each class returned by a classifier.
title (string, optional): Title of the generated plot. Defaults to
"KS Statistic Plot".
ax (:class:`matplotlib.axes.Axes`, optional): The axes upon which to
plot the learning curve. If None, the plot is drawn on a new set of
axes.
figsize (2-tuple, optional): Tuple denoting figure size of the plot
e.g. (6, 6). Defaults to ``None``.
title_fontsize (string or int, optional): Matplotlib-style fontsizes.
Use e.g. "small", "medium", "large" or integer-values. Defaults to
"large".
text_fontsize (string or int, optional): Matplotlib-style fontsizes.
Use e.g. "small", "medium", "large" or integer-values. Defaults to
"medium".
Returns:
ax (:class:`matplotlib.axes.Axes`): The axes on which the plot was
drawn.
Example:
>>> import scikitplot as skplt
>>> lr = LogisticRegression()
>>> lr = lr.fit(X_train, y_train)
>>> y_probas = lr.predict_proba(X_test)
>>> skplt.metrics.plot_ks_statistic(y_test, y_probas)
<matplotlib.axes._subplots.AxesSubplot object at 0x7fe967d64490>
>>> plt.show()
.. image:: _static/examples/plot_ks_statistic.png
:align: center
:alt: KS Statistic
"""
y_true = np.array(y_true)
y_probas = np.array(y_probas)
classes = np.unique(y_true)
if len(classes) != 2:
raise ValueError('Cannot calculate KS statistic for data with '
'{} category/ies'.format(len(classes)))
probas = y_probas
# Compute KS Statistic curves
thresholds, pct1, pct2, ks_statistic, \
max_distance_at, classes = binary_ks_curve(y_true,
probas[:, 1].ravel())
if ax is None:
fig, ax = plt.subplots(1, 1, figsize=figsize)
ax.set_title(title, fontsize=title_fontsize)
ax.plot(thresholds, pct1, lw=3, label='Class {}'.format(classes[0]))
ax.plot(thresholds, pct2, lw=3, label='Class {}'.format(classes[1]))
idx = np.where(thresholds == max_distance_at)[0][0]
ax.axvline(max_distance_at, *sorted([pct1[idx], pct2[idx]]),
label='KS Statistic: {:.3f} at {:.3f}'.format(ks_statistic,
max_distance_at),
linestyle=':', lw=3, color='black')
ax.set_xlim([0.0, 1.0])
ax.set_ylim([0.0, 1.0])
ax.set_xlabel('Threshold', fontsize=text_fontsize)
ax.set_ylabel('Percentage below threshold', fontsize=text_fontsize)
ax.tick_params(labelsize=text_fontsize)
ax.legend(loc='lower right', fontsize=text_fontsize)
return ax
@deprecated('This will be removed in v0.5.0. Please use '
'scikitplot.metrics.plot_precision_recall instead.')
def plot_precision_recall_curve(y_true, y_probas,
title='Precision-Recall Curve',
curves=('micro', 'each_class'), ax=None,
figsize=None, cmap='nipy_spectral',
title_fontsize="large",
text_fontsize="medium"):
"""Generates the Precision Recall Curve from labels and probabilities
Args:
y_true (array-like, shape (n_samples)):
Ground truth (correct) target values.
y_probas (array-like, shape (n_samples, n_classes)):
Prediction probabilities for each class returned by a classifier.
title (string, optional): Title of the generated plot. Defaults to
"Precision-Recall curve".
curves (array-like): A listing of which curves should be plotted on the
resulting plot. Defaults to `("micro", "each_class")`
i.e. "micro" for micro-averaged curve
ax (:class:`matplotlib.axes.Axes`, optional): The axes upon which to
plot the curve. If None, the plot is drawn on a new set of axes.
figsize (2-tuple, optional): Tuple denoting figure size of the plot
e.g. (6, 6). Defaults to ``None``.
cmap (string or :class:`matplotlib.colors.Colormap` instance, optional):
Colormap used for plotting the projection. View Matplotlib Colormap
documentation for available options.
https://matplotlib.org/users/colormaps.html
title_fontsize (string or int, optional): Matplotlib-style fontsizes.
Use e.g. "small", "medium", "large" or integer-values. Defaults to
"large".
text_fontsize (string or int, optional): Matplotlib-style fontsizes.
Use e.g. "small", "medium", "large" or integer-values. Defaults to
"medium".
Returns:
ax (:class:`matplotlib.axes.Axes`): The axes on which the plot was
drawn.
Example:
>>> import scikitplot as skplt
>>> nb = GaussianNB()
>>> nb.fit(X_train, y_train)
>>> y_probas = nb.predict_proba(X_test)
>>> skplt.metrics.plot_precision_recall_curve(y_test, y_probas)
<matplotlib.axes._subplots.AxesSubplot object at 0x7fe967d64490>
>>> plt.show()
.. image:: _static/examples/plot_precision_recall_curve.png
:align: center
:alt: Precision Recall Curve
"""
y_true = np.array(y_true)
y_probas = np.array(y_probas)
classes = np.unique(y_true)
probas = y_probas
if 'micro' not in curves and 'each_class' not in curves:
raise ValueError('Invalid argument for curves as it '
'only takes "micro" or "each_class"')
# Compute Precision-Recall curve and area for each class
precision = dict()
recall = dict()
average_precision = dict()
for i in range(len(classes)):
precision[i], recall[i], _ = precision_recall_curve(
y_true, probas[:, i], pos_label=classes[i])
y_true = label_binarize(y_true, classes=classes)
if len(classes) == 2:
y_true = np.hstack((1 - y_true, y_true))
for i in range(len(classes)):
average_precision[i] = average_precision_score(y_true[:, i],
probas[:, i])
# Compute micro-average ROC curve and ROC area
micro_key = 'micro'
i = 0
while micro_key in precision:
i += 1
micro_key += str(i)
precision[micro_key], recall[micro_key], _ = precision_recall_curve(
y_true.ravel(), probas.ravel())
average_precision[micro_key] = average_precision_score(y_true, probas,
average='micro')
if ax is None:
fig, ax = plt.subplots(1, 1, figsize=figsize)
ax.set_title(title, fontsize=title_fontsize)
if 'each_class' in curves:
for i in range(len(classes)):
color = plt.cm.get_cmap(cmap)(float(i) / len(classes))
ax.plot(recall[i], precision[i], lw=2,
label='Precision-recall curve of class {0} '
'(area = {1:0.3f})'.format(classes[i],
average_precision[i]),
color=color)
if 'micro' in curves:
ax.plot(recall[micro_key], precision[micro_key],
label='micro-average Precision-recall curve '
'(area = {0:0.3f})'.format(average_precision[micro_key]),
color='navy', linestyle=':', linewidth=4)
ax.set_xlim([0.0, 1.0])
ax.set_ylim([0.0, 1.05])
ax.set_xlabel('Recall')
ax.set_ylabel('Precision')
ax.tick_params(labelsize=text_fontsize)
ax.legend(loc='best', fontsize=text_fontsize)
return ax
def plot_precision_recall(y_true, y_probas,
title='Precision-Recall Curve',
plot_micro=True,
classes_to_plot=None, ax=None,
figsize=None, cmap='nipy_spectral',
title_fontsize="large",
text_fontsize="medium"):
"""Generates the Precision Recall Curve from labels and probabilities
Args:
y_true (array-like, shape (n_samples)):
Ground truth (correct) target values.
y_probas (array-like, shape (n_samples, n_classes)):
Prediction probabilities for each class returned by a classifier.
title (string, optional): Title of the generated plot. Defaults to
"Precision-Recall curve".
plot_micro (boolean, optional): Plot the micro average ROC curve.
Defaults to ``True``.
classes_to_plot (list-like, optional): Classes for which the precision-recall
curve should be plotted. e.g. [0, 'cold']. If given class does not exist,
it will be ignored. If ``None``, all classes will be plotted. Defaults to
``None``.
ax (:class:`matplotlib.axes.Axes`, optional): The axes upon which to
plot the curve. If None, the plot is drawn on a new set of axes.
figsize (2-tuple, optional): Tuple denoting figure size of the plot
e.g. (6, 6). Defaults to ``None``.
cmap (string or :class:`matplotlib.colors.Colormap` instance, optional):
Colormap used for plotting the projection. View Matplotlib Colormap
documentation for available options.
https://matplotlib.org/users/colormaps.html
title_fontsize (string or int, optional): Matplotlib-style fontsizes.
Use e.g. "small", "medium", "large" or integer-values. Defaults to
"large".
text_fontsize (string or int, optional): Matplotlib-style fontsizes.
Use e.g. "small", "medium", "large" or integer-values. Defaults to
"medium".
Returns:
ax (:class:`matplotlib.axes.Axes`): The axes on which the plot was
drawn.
Example:
>>> import scikitplot as skplt
>>> nb = GaussianNB()
>>> nb.fit(X_train, y_train)
>>> y_probas = nb.predict_proba(X_test)
>>> skplt.metrics.plot_precision_recall(y_test, y_probas)
<matplotlib.axes._subplots.AxesSubplot object at 0x7fe967d64490>
>>> plt.show()
.. image:: _static/examples/plot_precision_recall_curve.png
:align: center
:alt: Precision Recall Curve
"""
y_true = np.array(y_true)
y_probas = np.array(y_probas)
classes = np.unique(y_true)
probas = y_probas
if classes_to_plot is None:
classes_to_plot = classes
binarized_y_true = label_binarize(y_true, classes=classes)
if len(classes) == 2:
binarized_y_true = np.hstack(
(1 - binarized_y_true, binarized_y_true))
if ax is None:
fig, ax = plt.subplots(1, 1, figsize=figsize)
ax.set_title(title, fontsize=title_fontsize)
indices_to_plot = np.in1d(classes, classes_to_plot)
for i, to_plot in enumerate(indices_to_plot):
if to_plot:
average_precision = average_precision_score(
binarized_y_true[:, i],
probas[:, i])
precision, recall, _ = precision_recall_curve(
y_true, probas[:, i], pos_label=classes[i])
color = plt.cm.get_cmap(cmap)(float(i) / len(classes))
ax.plot(recall, precision, lw=2,
label='Precision-recall curve of class {0} '
'(area = {1:0.3f})'.format(classes[i],
average_precision),
color=color)
if plot_micro:
precision, recall, _ = precision_recall_curve(
binarized_y_true.ravel(), probas.ravel())
average_precision = average_precision_score(binarized_y_true,
probas,
average='micro')
ax.plot(recall, precision,
label='micro-average Precision-recall curve '
'(area = {0:0.3f})'.format(average_precision),
color='navy', linestyle=':', linewidth=4)
ax.set_xlim([0.0, 1.0])
ax.set_ylim([0.0, 1.05])
ax.set_xlabel('Recall')
ax.set_ylabel('Precision')
ax.tick_params(labelsize=text_fontsize)
ax.legend(loc='best', fontsize=text_fontsize)
return ax
def plot_silhouette(X, cluster_labels, title='Silhouette Analysis',
metric='euclidean', copy=True, ax=None, figsize=None,
cmap='nipy_spectral', title_fontsize="large",
text_fontsize="medium"):
"""Plots silhouette analysis of clusters provided.
Args:
X (array-like, shape (n_samples, n_features)):
Data to cluster, where n_samples is the number of samples and
n_features is the number of features.
cluster_labels (array-like, shape (n_samples,)):
Cluster label for each sample.
title (string, optional): Title of the generated plot. Defaults to
"Silhouette Analysis"
metric (string or callable, optional): The metric to use when
calculating distance between instances in a feature array.
If metric is a string, it must be one of the options allowed by
sklearn.metrics.pairwise.pairwise_distances. If X is
the distance array itself, use "precomputed" as the metric.
copy (boolean, optional): Determines whether ``fit`` is used on
**clf** or on a copy of **clf**.
ax (:class:`matplotlib.axes.Axes`, optional): The axes upon which to
plot the curve. If None, the plot is drawn on a new set of axes.
figsize (2-tuple, optional): Tuple denoting figure size of the plot
e.g. (6, 6). Defaults to ``None``.
cmap (string or :class:`matplotlib.colors.Colormap` instance, optional):
Colormap used for plotting the projection. View Matplotlib Colormap
documentation for available options.
https://matplotlib.org/users/colormaps.html
title_fontsize (string or int, optional): Matplotlib-style fontsizes.
Use e.g. "small", "medium", "large" or integer-values. Defaults to
"large".
text_fontsize (string or int, optional): Matplotlib-style fontsizes.
Use e.g. "small", "medium", "large" or integer-values. Defaults to
"medium".
Returns:
ax (:class:`matplotlib.axes.Axes`): The axes on which the plot was
drawn.
Example:
>>> import scikitplot as skplt
>>> kmeans = KMeans(n_clusters=4, random_state=1)
>>> cluster_labels = kmeans.fit_predict(X)
>>> skplt.metrics.plot_silhouette(X, cluster_labels)
<matplotlib.axes._subplots.AxesSubplot object at 0x7fe967d64490>
>>> plt.show()
.. image:: _static/examples/plot_silhouette.png
:align: center
:alt: Silhouette Plot
"""
cluster_labels = np.asarray(cluster_labels)
le = LabelEncoder()
cluster_labels_encoded = le.fit_transform(cluster_labels)
n_clusters = len(np.unique(cluster_labels))
silhouette_avg = silhouette_score(X, cluster_labels, metric=metric)
sample_silhouette_values = silhouette_samples(X, cluster_labels,
metric=metric)
if ax is None:
fig, ax = plt.subplots(1, 1, figsize=figsize)
ax.set_title(title, fontsize=title_fontsize)
ax.set_xlim([-0.1, 1])
ax.set_ylim([0, len(X) + (n_clusters + 1) * 10 + 10])
ax.set_xlabel('Silhouette coefficient values', fontsize=text_fontsize)
ax.set_ylabel('Cluster label', fontsize=text_fontsize)
y_lower = 10
for i in range(n_clusters):
ith_cluster_silhouette_values = sample_silhouette_values[
cluster_labels_encoded == i]
ith_cluster_silhouette_values.sort()
size_cluster_i = ith_cluster_silhouette_values.shape[0]
y_upper = y_lower + size_cluster_i
color = plt.cm.get_cmap(cmap)(float(i) / n_clusters)
ax.fill_betweenx(np.arange(y_lower, y_upper),
0, ith_cluster_silhouette_values,
facecolor=color, edgecolor=color, alpha=0.7)
ax.text(-0.05, y_lower + 0.5 * size_cluster_i, str(le.classes_[i]),
fontsize=text_fontsize)
y_lower = y_upper + 10
ax.axvline(x=silhouette_avg, color="red", linestyle="--",
label='Silhouette score: {0:0.3f}'.format(silhouette_avg))
ax.set_yticks([]) # Clear the y-axis labels / ticks
ax.set_xticks(np.arange(-0.1, 1.0, 0.2))
ax.tick_params(labelsize=text_fontsize)
ax.legend(loc='best', fontsize=text_fontsize)
return ax
def plot_calibration_curve(y_true, probas_list, clf_names=None, n_bins=10,
title='Calibration plots (Reliability Curves)',
ax=None, figsize=None, cmap='nipy_spectral',
title_fontsize="large", text_fontsize="medium"):
"""Plots calibration curves for a set of classifier probability estimates.
Plotting the calibration curves of a classifier is useful for determining
whether or not you can interpret their predicted probabilities directly as
as confidence level. For instance, a well-calibrated binary classifier
should classify the samples such that for samples to which it gave a score
of 0.8, around 80% should actually be from the positive class.
This function currently only works for binary classification.
Args:
y_true (array-like, shape (n_samples)):
Ground truth (correct) target values.
probas_list (list of array-like, shape (n_samples, 2) or (n_samples,)):
A list containing the outputs of binary classifiers'
:func:`predict_proba` method or :func:`decision_function` method.
clf_names (list of str, optional): A list of strings, where each string
refers to the name of the classifier that produced the
corresponding probability estimates in `probas_list`. If ``None``,
the names "Classifier 1", "Classifier 2", etc. will be used.
n_bins (int, optional): Number of bins. A bigger number requires more
data.
title (string, optional): Title of the generated plot. Defaults to
"Calibration plots (Reliabilirt Curves)"
ax (:class:`matplotlib.axes.Axes`, optional): The axes upon which to
plot the curve. If None, the plot is drawn on a new set of axes.
figsize (2-tuple, optional): Tuple denoting figure size of the plot
e.g. (6, 6). Defaults to ``None``.
cmap (string or :class:`matplotlib.colors.Colormap` instance, optional):
Colormap used for plotting the projection. View Matplotlib Colormap
documentation for available options.
https://matplotlib.org/users/colormaps.html
title_fontsize (string or int, optional): Matplotlib-style fontsizes.
Use e.g. "small", "medium", "large" or integer-values. Defaults to
"large".
text_fontsize (string or int, optional): Matplotlib-style fontsizes.
Use e.g. "small", "medium", "large" or integer-values. Defaults to
"medium".
Returns:
:class:`matplotlib.axes.Axes`: The axes on which the plot was drawn.
Example:
>>> import scikitplot as skplt
>>> rf = RandomForestClassifier()
>>> lr = LogisticRegression()
>>> nb = GaussianNB()
>>> svm = LinearSVC()
>>> rf_probas = rf.fit(X_train, y_train).predict_proba(X_test)
>>> lr_probas = lr.fit(X_train, y_train).predict_proba(X_test)
>>> nb_probas = nb.fit(X_train, y_train).predict_proba(X_test)
>>> svm_scores = svm.fit(X_train, y_train).decision_function(X_test)
>>> probas_list = [rf_probas, lr_probas, nb_probas, svm_scores]
>>> clf_names = ['Random Forest', 'Logistic Regression',
... 'Gaussian Naive Bayes', 'Support Vector Machine']
>>> skplt.metrics.plot_calibration_curve(y_test,
... probas_list,
... clf_names)
<matplotlib.axes._subplots.AxesSubplot object at 0x7fe967d64490>
>>> plt.show()
.. image:: _static/examples/plot_calibration_curve.png
:align: center
:alt: Calibration Curves
"""
y_true = np.asarray(y_true)
if not isinstance(probas_list, list):
raise ValueError('`probas_list` does not contain a list.')
classes = np.unique(y_true)
if len(classes) > 2:
raise ValueError('plot_calibration_curve only '
'works for binary classification')
if clf_names is None:
clf_names = ['Classifier {}'.format(x+1)
for x in range(len(probas_list))]
if len(clf_names) != len(probas_list):
raise ValueError('Length {} of `clf_names` does not match length {} of'
' `probas_list`'.format(len(clf_names),
len(probas_list)))
if ax is None:
fig, ax = plt.subplots(1, 1, figsize=figsize)
ax.plot([0, 1], [0, 1], "k:", label="Perfectly calibrated")
for i, probas in enumerate(probas_list):
probas = np.asarray(probas)
if probas.ndim > 2:
raise ValueError('Index {} in probas_list has invalid '
'shape {}'.format(i, probas.shape))
if probas.ndim == 2:
probas = probas[:, 1]
if probas.shape != y_true.shape:
raise ValueError('Index {} in probas_list has invalid '
'shape {}'.format(i, probas.shape))
probas = (probas - probas.min()) / (probas.max() - probas.min())
fraction_of_positives, mean_predicted_value = \
calibration_curve(y_true, probas, n_bins=n_bins)
color = plt.cm.get_cmap(cmap)(float(i) / len(probas_list))
ax.plot(mean_predicted_value, fraction_of_positives, 's-',
label=clf_names[i], color=color)
ax.set_title(title, fontsize=title_fontsize)
ax.set_xlabel('Mean predicted value', fontsize=text_fontsize)
ax.set_ylabel('Fraction of positives', fontsize=text_fontsize)
ax.set_ylim([-0.05, 1.05])
ax.legend(loc='lower right')
return ax
def plot_cumulative_gain(y_true, y_probas, title='Cumulative Gains Curve',
ax=None, figsize=None, title_fontsize="large",
text_fontsize="medium"):
"""Generates the Cumulative Gains Plot from labels and scores/probabilities
The cumulative gains chart is used to determine the effectiveness of a
binary classifier. A detailed explanation can be found at
http://mlwiki.org/index.php/Cumulative_Gain_Chart. The implementation
here works only for binary classification.
Args:
y_true (array-like, shape (n_samples)):
Ground truth (correct) target values.
y_probas (array-like, shape (n_samples, n_classes)):
Prediction probabilities for each class returned by a classifier.
title (string, optional): Title of the generated plot. Defaults to
"Cumulative Gains Curve".
ax (:class:`matplotlib.axes.Axes`, optional): The axes upon which to
plot the learning curve. If None, the plot is drawn on a new set of
axes.
figsize (2-tuple, optional): Tuple denoting figure size of the plot
e.g. (6, 6). Defaults to ``None``.
title_fontsize (string or int, optional): Matplotlib-style fontsizes.
Use e.g. "small", "medium", "large" or integer-values. Defaults to
"large".
text_fontsize (string or int, optional): Matplotlib-style fontsizes.
Use e.g. "small", "medium", "large" or integer-values. Defaults to
"medium".
Returns:
ax (:class:`matplotlib.axes.Axes`): The axes on which the plot was
drawn.
Example:
>>> import scikitplot as skplt
>>> lr = LogisticRegression()
>>> lr = lr.fit(X_train, y_train)
>>> y_probas = lr.predict_proba(X_test)
>>> skplt.metrics.plot_cumulative_gain(y_test, y_probas)
<matplotlib.axes._subplots.AxesSubplot object at 0x7fe967d64490>
>>> plt.show()
.. image:: _static/examples/plot_cumulative_gain.png
:align: center
:alt: Cumulative Gains Plot
"""
y_true = np.array(y_true)
y_probas = np.array(y_probas)
classes = np.unique(y_true)
if len(classes) != 2:
raise ValueError('Cannot calculate Cumulative Gains for data with '
'{} category/ies'.format(len(classes)))
# Compute Cumulative Gain Curves
percentages, gains1 = cumulative_gain_curve(y_true, y_probas[:, 0],
classes[0])
percentages, gains2 = cumulative_gain_curve(y_true, y_probas[:, 1],
classes[1])
if ax is None:
fig, ax = plt.subplots(1, 1, figsize=figsize)
ax.set_title(title, fontsize=title_fontsize)
ax.plot(percentages, gains1, lw=3, label='Class {}'.format(classes[0]))
ax.plot(percentages, gains2, lw=3, label='Class {}'.format(classes[1]))
ax.set_xlim([0.0, 1.0])
ax.set_ylim([0.0, 1.0])
ax.plot([0, 1], [0, 1], 'k--', lw=2, label='Baseline')
ax.set_xlabel('Percentage of sample', fontsize=text_fontsize)
ax.set_ylabel('Gain', fontsize=text_fontsize)
ax.tick_params(labelsize=text_fontsize)
ax.grid('on')
ax.legend(loc='lower right', fontsize=text_fontsize)
return ax
def plot_lift_curve(y_true, y_probas, title='Lift Curve',
ax=None, figsize=None, title_fontsize="large",
text_fontsize="medium"):
"""Generates the Lift Curve from labels and scores/probabilities
The lift curve is used to determine the effectiveness of a
binary classifier. A detailed explanation can be found at
http://www2.cs.uregina.ca/~dbd/cs831/notes/lift_chart/lift_chart.html.
The implementation here works only for binary classification.
Args:
y_true (array-like, shape (n_samples)):
Ground truth (correct) target values.
y_probas (array-like, shape (n_samples, n_classes)):
Prediction probabilities for each class returned by a classifier.
title (string, optional): Title of the generated plot. Defaults to
"Lift Curve".
ax (:class:`matplotlib.axes.Axes`, optional): The axes upon which to
plot the learning curve. If None, the plot is drawn on a new set of
axes.
figsize (2-tuple, optional): Tuple denoting figure size of the plot
e.g. (6, 6). Defaults to ``None``.
title_fontsize (string or int, optional): Matplotlib-style fontsizes.
Use e.g. "small", "medium", "large" or integer-values. Defaults to
"large".
text_fontsize (string or int, optional): Matplotlib-style fontsizes.
Use e.g. "small", "medium", "large" or integer-values. Defaults to
"medium".
Returns:
ax (:class:`matplotlib.axes.Axes`): The axes on which the plot was
drawn.
Example:
>>> import scikitplot as skplt
>>> lr = LogisticRegression()
>>> lr = lr.fit(X_train, y_train)
>>> y_probas = lr.predict_proba(X_test)
>>> skplt.metrics.plot_lift_curve(y_test, y_probas)
<matplotlib.axes._subplots.AxesSubplot object at 0x7fe967d64490>
>>> plt.show()
.. image:: _static/examples/plot_lift_curve.png
:align: center
:alt: Lift Curve
"""
y_true = np.array(y_true)
y_probas = np.array(y_probas)
classes = np.unique(y_true)
if len(classes) != 2:
raise ValueError('Cannot calculate Lift Curve for data with '
'{} category/ies'.format(len(classes)))
# Compute Cumulative Gain Curves
percentages, gains1 = cumulative_gain_curve(y_true, y_probas[:, 0],
classes[0])
percentages, gains2 = cumulative_gain_curve(y_true, y_probas[:, 1],
classes[1])
percentages = percentages[1:]
gains1 = gains1[1:]
gains2 = gains2[1:]
gains1 = gains1 / percentages
gains2 = gains2 / percentages
if ax is None:
fig, ax = plt.subplots(1, 1, figsize=figsize)
ax.set_title(title, fontsize=title_fontsize)
ax.plot(percentages, gains1, lw=3, label='Class {}'.format(classes[0]))
ax.plot(percentages, gains2, lw=3, label='Class {}'.format(classes[1]))
ax.plot([0, 1], [1, 1], 'k--', lw=2, label='Baseline')
ax.set_xlabel('Percentage of sample', fontsize=text_fontsize)
ax.set_ylabel('Lift', fontsize=text_fontsize)
ax.tick_params(labelsize=text_fontsize)
ax.grid('on')
ax.legend(loc='lower right', fontsize=text_fontsize)
return ax