
Assignment 5: Epipolar geometry and triangulation

Machine perception

2022/2023

Create a folder assignment5 that you will use during this assignment. Unpack the
content of the assignment5.zip that you can download from the course webpage to the
folder. Save the solutions for the assignments as Python scripts to assignment5 folder.
In order to complete the assignment you have to present your solutions to the teaching
assistant. Some assignments contain questions that require sketching, writing or manual
calculation. Write these answers down and bring them to the assignment defense as well.

The maximum total amount of points for each assignment is 100. All the tasks in the
assignment are mandatory, except if they are marked with F . You can obtain 75 points
for solving all the mandatory tasks. The remaining 25 points can be gained by solving
optional tasks. There might be more than 25 points for optional assignments. In that
case, the maximum of 100 points can not be exceeded, even if you solve all of them. The
number of points for each optional task is written next to the instructions.

At the defense, the obligatory tasks must be implemented correctly and completely.
If your implementation is incomplete, you will not be able to successfully defend the
assignment.

Introduction
In this assignment we will review several parts of the epipolar geometry [1] (chapter 10.1)
and robust estimation [1] (page 346).

Note: You can use feature point detection and matching that you implemented in As-
signment 4. If you are unsure of your implementation or if you want to experiment with
different detection and matching methods, you are allowed to use algorithms implemented
in OpenCV, such as SIFT or ORB. Using functions such as cv2.findFundamentalMat()
or cv2.triangulatePoins() is, of course, not allowed.

Exercise 1: Disparity
In this assignment we will focus on calculating disparity from a two-camera system. Our
analysis will be based on a simplified stereo system, where two identical cameras are
aligned with parallel optical axes and their image planes (CCD sensors) lie on the same
plane (Image 1a).

1

(a) (b)

Figure 1: Left image shows the simplest stereo setup with two parallel cameras. Right
image shows geometric relations when mapping of a point p in 3D space to axis x in
image planes of the cameras.

In Figure 1b we can observe that we can write the following relations using similar
triangles:

x1
f

=
px
pz

,
−x2
f

=
T − px
pz

. (1)

(a) Using the equations (1) derive the expression for disparity which is defined as d =
x1 − x2. What is the relation between the distance of the object (point p in Figure
1) to camera and the disparity d? What happens to disparity when the object is
close to the cameras and what when it is far away?

(b) Write a script that computes the disparity for a range of values of pz. Plot the values
to a figure and set the appropriate units to axes. Use the following parameters of
the system: focal length is f = 2.5mm and stereo system baseline is T = 12cm.

(c) In order to get a better grasp on the idea of distance and disparity, you will calculate
the numbers for a specific case. We will take the parameters from a specification of
a commercial stereo camera Bumblebee2 manufactured by the company PointGray:
f = 2.5mm, T = 12cm, whose image sensor has a resolution of 648×488 pixels that
are square and the width of a pixel is 7.4µm. We assume that there is no empty
space between pixels and that both cameras are completely parallel and equal. Lets
say that we use this system to observe a (point) object that is detected at pixel 550
in x axis in the left camera and at the pixel 300 in the right camera. How far is the
object (in meters) in this case? How far is the object if the object is detected at
pixel 540 in the right camera? Solve this task analytically and bring your solution
to the presentation of the exercise.

(d) F (10 points) Write a script that calculates the disparity for an image pair. Use
the images in the directory disparity. Since the images were pre-processed we can
limit the search for the most similar pixel to the same row in the other image. Since
just the image intensity carries too little information, we will instead compare small

2

image patches. A simple way of finding a matching patch is to use normalized cross
correlation. NCC for matrices X and Y of equal size is defined as

NCC(X,Y) =

∑
(xi − x̄)(yi − ȳ)√∑

(xi − x̄)2
∑

(yi − ȳ)2
. (2)

where xi denotes a specific cell in matrixX and yi a specific cell in matrixY. A patch
from the second image is considered a match if it has the highest NCC value. The
difference in x axis between the point from the first image and the matching point
from the second image is the disparity estimate in terms of pixels1. The disparity
search is performed in a single direction.

Question: Is the disparity estimated well for all pixels? If not, what are the
characteristics of pixels with more consistent disparity estimation?

Figure 2: Disparity calculated with patch size 10 and search window 35. Image was reduced
to 50 % of its size.

(e) F (5 points) Improve the noisy disparity estimation. You can implement a sym-
metric matching technique where the left image is compared to the right image and
vice versa. The result can then be merged in some way that you choose. Smooth
the results using median filter and choose an appropriate search window to obtain
good results. Very noisy results will not be graded.

Note: You cannot merge the results element-wise. The images were taken from
different viewpoints and the results would be incorrect.

Exercise 2: Fundamental matrix, epipoles, epipolar lines
In the previous exercise we were dealing with a special stereo setup where image planes of
two cameras were aligned. In that case the projection of a 3D point has the same y coor-
dinate in both cameras and different x coordinate. Such a setup ensures that the epipolar
lines in the cameras are parallel to the lines in the sensor. This simplifies the search for
correspondences (i.e. the projection of the same 3D point to both cameras). Generally the
epipolar lines are not aligned with rows and in order to establish the relation between two
image planes, the fundamental matrix needs to be computed.

1Converting this estimate to distance requires information about the camera, which we do not have
for the given image pairs.

3

In this exercise you will implement a simple version of an eight-point algorithm [1]
that can be used to estimate a fundamental matrix between two cameras. We will first
revisit the theory that will be used for the task.

We are given a list of perfect correspondence pairs of points in left x = [u, v, 1]T and
right x′ = [u′, v′, 1]T image in homogeneous coordinates (u corresponds to column, v to
row). The fundamental matrix rule states that each correspondence is a valid solution of
the following equation:

x′TFx = 0 ; F =

 F11 F12 F13

F21 F22 F23

F31 F32 F33

 , (3)

where F denotes a fundamental matrix. Similarly to what we have done for the estimation
of homography in the previous exercise, we can write a relation between a single pair of
correspondence points as

[
uu′ u′v u′ uv′ vv′ v′ u v 1

]



F11

F12

F13

F21

F22

F23

F31

F32

F33


= 0. (4)

If we combine N ≥ 8 of these equations in a matrix A we get a system of linear equations:

Af = 0
u1u

′
1 u′1v1 u′1 u1v

′
1 v1v

′
1 v′1 u1 v1 1

u2u
′
2 u′2v2 u′2 u2v

′
2 v2v

′
2 v′2 u2 v2 1

...
...

...
...

...
...

...
...

...
uNu

′
N u′NvN u′N uNv

′
N vNv

′
N v′N uN vN 1



F11

F12
...
F33

 =


0
0
...
0

 . (5)

We can solve the linear system above in a least-squares way by using the singular value
decomposition method (SVD). Matrix A is decomposed to A = UDVT . The solution
according to least squares corresponds to the eigenvector vn with the lowers eigenvalue,
e.t. the last column of the matrix2 V.

Recall that the epipole of a camera is a point where all the epipolar lines (for that
camera) intersect. This requires the rank of the matrix F to be 2, however, this is usually
not true when dealing with noisy data – the fundamental matrix estimated using the
approach above will not have a rank 2. In practice this means that the epipolar lines will
not intersect in a single point but rather in a small neighborhood of such a point. To
stabilize the system we have to subsequently limit the rank of the fundamental matrix.
This can be done by performing a SVD decomposition to F = UDVT , set the lowest
eigenvalue (D33 in matrix D) to 0, and then reconstruct back the corrected matrix F by

2This is a solution in column form as seen in equation (4) that has to be reshaped to the form in
equation (3).

4

multiplying UDVT . A newly created fundamental matrix will satisfy the rank condition
rank = 2 and can be used to compute two epipoles (one for each camera)

Fe = 0 in FTe′ = 0, (6)

by decomposing the matrix F again and computing the left and right3 eigenvector of the
matrix F,

e =
[
V13 V23 V33

]
/V33 , e

′ =
[
U13 U23 U33

]
/U33, (7)

which are then used to obtain both epipoles in homogeneous coordinates.
A simple eight-point algorithm for estimation of a fundamental matrix and the epipoles

can be summarized as:

• Construct the matrix A as in equation (5)

• Decompose the matrix using SVD A = UDVT , and transform the last eigenvector
v9 in a 3× 3 fundamental matrix F

• Decompose F = UDVT and set the lowest eigenvalue to 0, reconstruct F = UDVT .

• Decompose F = UDVT again, compute both epipoles following the equation (7).

Once we have the fundamental matrix, we can take any point x in the first image
plane and determine an epipolar line for that point in the second image plane l′ = Fx.
Likewise, we can take point x′ in the second image plane and find the epipolar line in
the first image plane l = FTx′. The line in the second image is then represented by all
solutions of u′ and v′ in the equation [u′, v′, 1]T l′ = 0.

(a) Solve the following task analytically. We are given a system of two cameras and a
fundamental matrix that connects the left camera to the right one

F =

 1 0 0
0 0.5 0
0 0 −1

 . (8)

Compute the equation of the epipolar line in the right camera that corresponds to
the point at column = 0 and row = 2 in the left camera. Take into account that the
point has to be first written in homogeneous coordinates, i.e. x = [column, row, 1]T .
Also compute the epipolar line for another point at column = 1 and row = 0 in the
left camera, and the epipole.

Estimating a fundamental matrix

(b) Implement a function fundamental_matrix that is given a set of (at least) eight
pairs of points from two images and computes the fundamental matrix using the
eight-point algorithm.

As the eight-point algorithm can be numerically unstable, it is usually not executed
directly on given pairs of points. Instead, the input is first normalized by centering

3Attention: the terms left and right eigenvector are mathematical terms and do not hold any relation
to the left and right camera in our system.

5

them to their centroid and scaling their positions so that the average distance to the
centroid is

√
2. To achieve this, you can use the function normalize_points from

the supplementary material.

Extend the function fundamental_matrix so that it first normalizes the input point-
set of the left camera (we get transformed points and the transformation matrix T1)
and then transform the input point set of the right camera (we get the transformed
points and the transformation matrix T2). Using the transformed points the algo-
rithm computes fundamental matrix F̂, then transforms it into the original space
using both transformation matrices F = TT

2 F̂T1.

Test your function for fundamental matrix estimation using ten correspondence
pairs that you load from the file house_points.txt. The columns are formatted as
follows: x1, y1, x2, y2, i.e. the first column contains the x-coordinates of the points for
the first image etc. Compute the fundamental matrix F and for each point in each
image calculate the corresponding epipolar line in the other image. You can draw the
epipolar lines using draw_epiline from the supplementary material. According to
epipolar geometry the corresponding epipolar line should pass through the point. As
a testing reference the correct fundamental matrix is included in the supplementary
material in file house_fundamental.txt.

Figure 3: Correspondences and epipolar lines for both images, calculated with the funda-
mental matrix.

(c) We use the reprojection error as a quantitative measure of the quality of the esti-
mated fundamental matrix.

Write a function reprojection_error that calculates the reprojection error of a
fundamental matrix F given two matching points. For each point, the function
should calculate the corresponding epipolar line from the point’s match in the other
image, then calculate the perpendicular distance between the point and the line
using the equation:

distance(ax+ by + c = 0, (x0, y0)) =
|ax0 + by0 + c|√

a2 + b2
, (9)

where a, b and c are the parameters of the epipolar line. Finally, the function should
return the average of the two distances.

Write a script that performs two tests: (1) compute the reprojection error for points
p1 = [85, 233]T in the left image-plane and p2 = [67, 219]T in right image-plane using
the fundamental matrix (the error should be approximately 0.15 pixels). (2) Load

6

the points from the file house_points.txt and compute the average of symmetric
reprojection errors for all pairs of points. If your calculation is correct, the average
error should be approximately 0.33 pixels.

(d) F (15 points) Perform fully automatic fundamental matrix estimation on a pair
of images from the directory desk4. Detect the correspondence points using your
preferred method. As some of the matches might be incorrect, extend the RANSAC
algorithm so that it will work for fundamental matrix estimation. You can measure
the quality of a solution by using the point-to-line reprojection error. Display the
correspondences to check whether all of them are correct. Calculate the fundamental
matrix on the final set of inliers and show correspondences with epipolar lines.

Exercise 3: Triangulation
If we know the intrinsic parameters of the cameras, we can calculate the 3D position of the
points observed in both cameras. You can find the projection matrices for both cameras
stored in files house1_camera.txt and house2_camera.txt. The calibration matrices
have the size 3× 4.

We will use an algebraic approach to perform the triangulation. Assuming we have a
2D correspondence between x1 in the first image plane and x2 in the second image plane
(in homogeneous coordinates), a location of the common point X in 3D space (4D in
homogenous coordinates) is given by relations

λ1x1 = P1X (10)
λ2x2 = P2X. (11)

where λ1, λ2 ∈ R. We know that a vector product between parallel vectors is 0 so we use
x1 × λ1x1 = 0 and get:

x1 ×P1X = [x1×]P1X = 0 (12)
x2 ×P2X = [x2×]P2X = 0, (13)

where we have used the following form (shear-symmetric form) to get rid of a vector
product:

a× b = [x1×]b =

 0 −az ay
az 0 −ax
−ay ax 0

b. (14)

For each pair of 2D points we get two independent linear equations for three unknown
variables. If we combine in a matrix A the first two lines of the product [x1×]P1 and first
two lines of the product [x2×]P2, we can compute the mean quadratic estimate of X by
solving a linear equation system AX = 0. As you already know by now, such a solution
can be obtained by computing the eigenvector of matrix A that has the lowest eigenvalue.
Note that the solution of the system is a point X in homogeneous coordinates (4D space),
therefore you have to first normalize the values so the last coordinate becomes 1.

4Credit: http://nghiaho.com/

7

http://nghiaho.com/

(a) Implement the function triangulate that accepts a set of correspondence points
and a pair of calibration matrices as an input and returns the triangulated 3D
points. Test the triangulation on the ten points from the file house_points.txt.
Visualize the result using plt.plot or plt.scatter. Also plot the index of the
point in 3D space (use plt.text) so the results will be easier to interpret. Plot the
points interactively, so that you can rotate the visualization.

Note: The coordinate system used for plotting in 3D space is usually not the same
as the camera coordinate system. In order to make the results easier to interpret, the
ordering of the axes can be modified by using a transformation matrix. For example,
you may want to use matrix T:

T =

 −1 0 0
0 0 1
0 −1 0

 . (15)

to transform 3D points with Tx.

Figure 4: Points on the first and second image, and their 3D positions visualized in a plot.
To get a feeling of their placement, rotate the plot.

(b) F (25 points) Perform a 3D reconstruction of an object you own. For that you will
need to calibrate a camera with which you will take images of the object. You can
use a webcam or a cell phone. Print out a calibration pattern5 and take multiple
images with the pattern visible on a planar surface (if you scale it correctly you
can also take pictures of your screen). Take care that you change the orientation
and distance between the pattern and the camera. Detect the circle centers using
cv2.findCirclesGrid and check the correctness with cv2.drawChessboardCorners.
Finally, use cv2.calibrateCamera to obtain the camera intrinsic parameters from
the detected patterns. You can check that applying cv.undistort() removes the
potential distortion from your images (depending on the lens used, the changes might
be small). If you performed the calibration correctly, the returned reprojection error
should be below 1 pixel.

When you have the intrinsic parameters of your camera, you will need to take two
images of your object from different viewpoints. First, undistort your images using
cv2.undistort, then detect and match feature points. Calculate the fundamental
matrix with RANSAC and, using the calibration matrix, also calculate the essential
matrix. Then, you can use cv2.recoverPose to obtain the rotation and translation

5You can use this one: https://nerian.com/nerian-content/downloads/calibration-patterns/pattern-
a4.pdf

8

https://nerian.com/nerian-content/downloads/calibration-patterns/pattern-a4.pdf
https://nerian.com/nerian-content/downloads/calibration-patterns/pattern-a4.pdf

parameters (extrinsics) for both camera viewpoints. Use the extrinsic parameters
to calculate the projection matrices for both cameras and triangulate the matched
points. Display the final 3d points. To further verify your solution, project the
detected points to each of the images using the recovered projection matrices.

Note: cv2.recoverPose will only return one rotation matrix and one translation
vector. This is because the first camera lies in the origin of the coordinate system
and its rotation matrix equals to the 3 × 3 identity matrix, while its translation
vector only contains zeros (naturally excluding the last element in homogenous
coordinates).

References
[1] D. A. Forsyth and J. Ponce. Computer Vision: A Modern Approach. Prentice Hall,

2002.

9

