
Assignment 4: Feature points, matching, homography

Machine perception

2022/2023

Create a folder assignment4 that you will use during this assignment. Unpack the
content of the assignment4.zip that you can download from the course webpage to the
folder. Save the solutions for the assignments as Python scripts to assignment4 folder.
In order to complete the assignment you have to present your solutions to the teaching
assistant. Some assignments contain questions that require sketching, writing or manual
calculation. Write these answers down and bring them to the assignment defense as well.

The maximum total amount of points for each assignment is 100. All the tasks in the
assignment are mandatory, except if they are marked with F . You can obtain 75 points
for solving all the mandatory tasks. The remaining 25 points can be gained by solving
optional tasks. There might be more than 25 points for optional assignments. In that
case, the maximum of 100 points can not be exceeded, even if you solve all of them. The
number of points for each optional task is written next to the instructions.

At the defense, the obligatory tasks must be implemented correctly and completely.
If your implementation is incomplete, you will not be able to successfully defend the
assignment.

Introduction
This assignment will deal with automatic searching for correspondence points between
two images. Correspondences are a key step when dealing with the task of aligning two or
more images, for example, building a panorama from multiple images. Methods that find
correspondences between images usually start by finding feature points in them. Feature
points denote regions in the image that have a high chance of re-detection in an image
where the same scene is captured from a slightly different angle or viewing conditions.

Exercise 1: Feature points detectors
In this exercise you will implement two frequently used feature point detectors: the Hessian
algorithm [1](p. 44) and the Harris algorithm.

(a) The Hessian detector is based on the matrix of second derivatives H(x, y) (also
named Hessian matrix, hence the name of the algorithm) at point (x, y) in the
image:

H(x, y) =

[
Ixx(x, y;σ) Ixy(x, y;σ)
Ixy(x, y;σ) Iyy(x, y;σ)

]
, (1)

1

where σ explicitly states that the second derivative is computed on a smoothed
image. Hessian detector selects point (x, y) as a feature point if the determinant of
the Hessian matrix exceeds a given threshold value t:

det(H(x, y)) = Ixx(x, y;σ)Iyy(x, y;σ)− Ixy(x, y;σ)
2 > t. (2)

Implement a function hessian_points, that computes a Hessian determinant using
the equation (2) for each pixel of the input image. As this computation can be
very slow if done pixel by pixel, you have to implement it using vector operations
(without explicit for loops). Test the function using image from test_points.jpg
as your input (do not forget to convert it to grayscale) and visualize the result.

Extend the function hessian_points by implementing a non-maximum suppres-
sion post-processing step that only retains responses that are higher than all the
neighborhood responses and whose value are higher than a given threshold value
thresh. Try different box sizes for the neighborhood.

Create a function that you will use to plot the detected points (use plt.scatter())
over the input image. Load the image test_points.jpg, process it and visualize
the result. Set the input parameters of the Hessian detector to thresh = 0.004 and
σ = 3, and then change their values to get a feeling for the effect of the parameters.

Question: What kind of structures in the image are detected by the algorithm?
How does the parameter σ affect the result?

(b) Implement the Harris feature point detector. This detector is based on the auto-
correlation matrix C that measures the level of self-similarity for a pixel neigh-
borhood for small deformations. At the lectures, you have been told that the Har-
ris detector chooses a point (x, y) for a feature point if both eigenvalues of the
auto-correlation matrix for that point are large. This means that the neighbor-
hood of (x, y) contains two well-defined rectangular structures – i.e. a corner. Auto-
correlation matrix can be computed using the first partial derivatives at (x, y) that

2

are subsequently smoothed using a Gaussian filter:

C(x, y;σ, σ̃) =

[
(G(σ̃) ∗ I2x(σ))[x, y] (G(σ̃) ∗ (Ix(σ)Iy(σ)))[x, y]

(G(σ̃) ∗ (Ix(σ)Iy(σ)))[x, y] (G(σ̃) ∗ I2y (σ))[x, y]

]
, (3)

where ∗ stands for convolution, σ is used for computing the image derivative as in
the previous assignments, and σ̃ is used for subsequent smoothing of the derivative.

Computing eigenvalues λ1 and λ2 of matrix C(x, y;σ, σ̃) is expensive, therefore we
will use the following relations1

det(C) = λ1λ2 (4)
trace(C) = λ1 + λ2 (5)

to compute the ratio r = λ1/λ2. If we assume that

trace2(C)

detC
=

(λ1 + λ2)
2

λ1λ2
=

(rλ2 + λ2)
2

rλ2λ2
=

(r + 1)2

r
, (6)

we can express the feature point condition for (x, y) as:

det(C)− αtrace2(C) > t. (7)

In practice we use σ̃ = 1.6σ, α = 0.06 for parameter values. Implement the condition
(7) for all pixels without for loops, as you did for the core part of the Hessian detec-
tor. Perform non-maximum suppression post-processing step as well as thresholding
using threshold thresh.

Load the image test_points.jpg and compute the Harris feature points. Compare
the result with the feature points detected by the Hessian detector. Experiment with
different parameter values (start with thresh = 1e−6). Do the feature points of
both detectors appear on the same structures in the image?

1In the following text we will omit the parameters of an auto-correlation matrix C(x, y;σ, σ̃) for clarity
and write C instead.

3

Exercise 2: Matching local regions
One of the uses of feature points is searching for similar structures in different im-
ages. To do this, we will need descriptors of the regions around these points. In this
assignment you will implement some simple descriptors as well as their matching.

(a) Use the function simple_descriptors from a4_utils.py to calculate descriptors
for a list of feature points. Then, write a function find_correspondences which
calculates similarities between all descriptors in two given lists. Use Hellinger
distance (see Assignment 2). Finally, for each descriptor from the first list, find
the most similar descriptor from the second list. Return a list of [a, b] pairs, where
a is the index from the first list, and b is the index from the second list.

Write a script that loads images graf/graf_a_small.jpg and graf/graf_b_small.jpg,
runs the function find_correspondences and visualizes the result. Use the func-
tion display_matches from the supplementary material for visualization. Ex-
periment with different parameters for descriptor calculation and report on the
changes that occur.

(b) Implement a simple feature point matching algorithm. Write a function find_matches
that is given two images as an input and returns a list of matched feature points
from image 1 to image 2. The function should return a list of index pairs, where
the first element is the index for feature points from the first image and the second
element is the index for feature points from the second image.

Follow the algorithm below:

• Execute a feature point detector to get stable points for both images (you
can experiment with both presented detectors),

• Compute simple descriptors for all detected feature points

• Find best matches between descriptors in left and right images using the
Hellinger distance, i.e. compute the best matches from the left to right image
and then the other way around. In a post-processing step only select sym-
metric matches. A symmetric match is a match where a feature point P i

1 in
the left image is matched to point P j

2 in the right image and at the same
time point P j

2 in the right image is matched to the point P i
1 in left image.

4

This way we get a set of point pairs where each point from the left image
is matched to exactly one point in the right image as well as the other way
around.

Use the function display_matches from the supplementary material to display all
the symmetric matches. Write a script that loads images graf/graf_a_small.jpg
and graf/graf_b_small.jpg, runs the function find_matches and visualizes the
result.

Question: What do you notice when visualizing the correspondences? How ac-
curate are the matches?

(c) F (5 points) Incorrect matches can occur when matching descriptors. Suggest
and implement a simple method for eliminating at least some of these incorrect
matches. You can use the ideas that were presented at the lectures or test your
own ideas. Either way, you need to explain the idea behind the method as well
as demonstrate that the number of incorrect matches is lowered when using the
proposed method.

(d) F (25 points) Implement a local feature detector of your choice (e.g. SIFT, SURF,
BRIEF, HOG). Test it on other assignments and report on the changes (increased
robustness etc.).

(e) F (5 points) Record a video with your phone or webcam. Use OpenCV to detect
keypoints of your choice, display them using cv2.drawKeypoints and save the
video with the displayed keypoints. The video must demonstrate the keypoint
detector’s robustness to rotation and scale change. Make the video at least 15s
long.

Exercise 3: Homography estimation
In this assignment we are dealing with planar images, therefore we can try and estimate
a homography matrix H that maps one image to another using planar correspondences.
You will implement an algorithm that computes such a transformation using the mini-
mization of the mean square error. For additional information about the method, consult

5

the lecture notes as well as the course literature [1] (in the literature, the term direct
linear transform (DLT) is frequently used to describe the idea).

We will start with a short overview of the minimization of mean square error on
a simpler case of similarity transform estimation. The similarity transform is a linear
transform that accounts for translation, rotation, and scale. The transformation of a
point xr can be written as xt = f(xr,p), where p = [p1, p2, p3, p4] is a vector of four
parameters that define the transform such that

xt =

[
xt
yt

]
=

[
xrp1 − yrp2 + p3
xrp2 + yrp1 + p4

]
.

Question: Looking at the equation above, which parameters account for translation
and which for rotation and scale?

Question: Write down a sketch of an algorithm to determine similarity transform
from a set of point correspondences P = [(xr1,xt1), (xr2,xt2), . . . (xrn,xtn)]. For more
details consult the lecture notes.

You will now implement a similar, but more complex algorithm for homography
estimation. For a reference point xr in the first image we compute a corresponding
point xt in the second image as:

Hxr = x′
t (8) h1,1 h1,2 h1,3

h2,1 h2,2 h2,3
h3,1 h3,2 1

 xr
yr
1

 =

 x′t
y′t
z′t

 , and xt =

 xt
yt
1

 =

x′
t

z′t
y′t
z′t
1

 ,
where points xr and xt are written in homogeneous coordinates2, xr and yr correspond to
location in the first image, and xt and yt to the second image. Using the equations (8) we
get a system of linear equations with eight unknowns h1,1, h1,2, h1,3, h2,1, h2,2, h2,3, h3,1, h3,2:

h1,1xr + h1,2yr + h1,3
h3,1xr + h3,2yr + 1

= xt (9)

h2,1xr + h2,2yr + h2,3
h3,1xr + h3,2yr + 1

= yt, (10)

that can be transformed to

h1,1xr + h1,2yr + h1,3 − xth3,1xr − xth3,2yr − xt = 0 (11)
h2,1xr + h2,2yr + h2,3 − yth3,1xr − yth3,2yr − yt = 0. (12)

If we want to estimate the eight parameters that determine a homography, we need
at least four pairs of matched feature points. As some matches can be imprecise,
we can increase the accuracy of our estimate by using a larger number of matches
(xr1,xt1), . . . , (xrn,xtn). This way we get an overdetermined system of equations:

2Homogeneous coordinates for a point in 2D space are obtained by adding a third coordinate and
setting it to 1.

6

Ah = 0 (13)

xr1 yr1 1 0 0 0 −xt1xr1 −xt1yr1 −xt1
0 0 0 xr1 yr1 1 −yt1xr1 −yt1yr1 −yt1
xr2 yr2 1 0 0 0 −xt2xr2 −xt2yr2 −xt2
0 0 0 xr2 yr2 1 −yt2xr2 −yt2yr2 −yt2
...

...
...

...
...

...
...

...
...

xrn yrn 1 0 0 0 −xtnxrn −xtnyrn −xtn
0 0 0 xrn yrn 1 −ytnxrn −ytnyrn −ytn

h1,1
h1,2
h1,3
h2,1
h2,2
h2,3
h3,1
h3,2
1

=

0
0
0
0
0
...
0
0

, (14)

that can be (similarly to estimation of similarity transform) solved as a minimization
of mean square error. If the matrix A is a square matrix then we get an exact solution
of the system. In case of an over-determined system (e.g., n > 4) the matrix A is not
square. This problem is usually [1] solved using a matrix pseudo-inverse ATA, that is
square and can be therefore be split to eigenvectors and eigenvalues. A solution of such
a system is the unit eigenvector of ATA that corresponds to the lowest eigenvalue. The
same solution can be obtained more efficiently using the singular-value decomposition
(SVD) as an eigenvector that corresponds to the lowest eigenvalue of A (using function
np.linalg.svd).

A
svd
= UDVT = U

 λ1,1 . . . 0
...
0 · · · λ9,9

 v1,1 . . . v1,9

...
v9,1 · · · v9,9

T

(15)

A vector h that contains the parameters of the homography matrix is obtained from
the last column of matrix V and by normalizing the vector with the value of v9,9 to set
the last element in h to 1:

h =
[v1,9, . . . , v9,9]

T

v9,9
. (16)

(a) Write function estimate_homography, that approximates a homography between
two images using a given set of matched feature points following the algorithm
below.

• Construct a matrix A using the equation (13).

• Perform a matrix decomposition using the SVD algorithm:
U, S, VT = np.linalg.svd(A).

• Compute vector h using equation (16).

• Reorder the elements of h to a 3 × 3 matrix H (e.g. using the function
reshape).

Load the two New York cityscape images (inside newyork folder), and four hand-
annotated correspondence pairs in the file newyork.txt. You can load the data
with np.loadtxt. The columns are formatted as follows: x1, y1, x2, y2, i.e. the
first column contains the x-coordinates of the points for the first image etc. Use

7

the function display_matches to display the pairs of points. Using these pairs
estimate the homography matrix H from the first image to the second image and
use function cv2.warpPerspective to transform the first image to the plane of
the second image using the given homography, then display the result. Also test
your algorithm with images graf/graf_a.jpg, graf/graf_b.jpg and points from
graf.txt.

Note: You can check the correctness of your implementation by comparing your
result with the data in file newyork/H.txt. The numbers might not be absolutely
identical, but should not differ from the reference before the third decimal place.

RANSAC algorithm

In practice, automatic correspondence detection algorithms very rarely find per-
fect matches. In most cases the locations of these points contain some noise, or in
some cases several correspondences might also be completely wrong. These corre-
spondences are called outliers3. A good meta-algorithm for such cases is RANdom
SAmple Consensus (RANSAC). The algorithm can be applied to a wide variety
of problems.

We can structure a variant that robustly estimates a homography as follows:

• Randomly select a minimal set of matches that are required to estimate a
model (that is 4 matches for homography).

• Estimate the homography matrix

• Determine the inliers for the estimated homography (i.e. matched pairs with
the reprojection error below a given threshold).

• If the percentage of inliers if large enough, use the entire inlier subset to
estimate a new homography matrix.

• If the error of the newly computed homography is lower than any before,
save the inlier set and the corresponding homography matrix.

• Iterate for k iterations.

The value of parameter k is defined by the properties of our data that are set by
knowing the estimation problem that we are trying to solve. E.g., suppose that we
constantly encounter at least w percent of inliers (correctly matched point pairs).
The number of pairs required to estimate a homography matrix H is at least
n = 4. We can now compute the probability of successful estimation of H, i.e. the
probability that all n selected points will be inliers as wn. The probability that
this will not be true is 1− wn. The probability that we do not manage to select
a clean set of inliers in k repetitions is pfail = (1− wn)k. In practice, we therefore
select k high enough to reduce the probability of failure pfail to an acceptable level.

(b) Using the find_matches function that you have implemented in the previous
exercise, find a set of matched points from either the graf or newyork image pairs.
Then, implement the RANSAC algorithm for robust estimation of the homography

3You have probably noticed some outliers in the previous exercise when computing a homography.

8

matrix. For that you will need the reprojection error for each of the proposed
solutions. The reprojection error for each point can be calculated by multiplying
the point’s coordinates with the homography matrix and comparing the result
to the reference point from the other image. You can use Euclidean distance for
that. The final reprojection error for a solution should then be the average of
reprojection errors for all included points.

Find a subset of points that produce a high quality homography estimation and
use that matrix H to transform one image to the other (you can again use
cv2.warpPerspective).

Question: How many iterations on average did you need to find a good solution?
How does the parameter choice for both the keypoint detector and RANSAC itself
influence the performance (both quality and speed)?

(c) F (5 points) Calculate the number of expected iterations for RANSAC using
the formula mentioned in the instructions. Estimate the missing values (i.e. the
inlier probability) using the example images used in this assignment. Propose and
implement a method that will try to stop the algorithm as soon as a good enough
solution is found.

(d) F (15 points) Implement and test a different robust homography estimation algo-
rithm using iterative reweighed least squares approach that you have heard about
at the lectures. Test the robustness of this algorithm on the image pairs from the
previous task. Experiment with different numbers of correspondences used as an
input to the estimation.

9

(e) F (10 points) Write your own function for mapping points using the homography
matrix. It should work like OpenCV’s warpPerspective(). It should accept an
image and a homography matrix and return the input image as remapped by the
homography matrix. The size of the output should match the size of the input
image.

Hint: You will need to use homogeneous coordinates.

Note: The mapping should be without holes or artifacts. Additional post-processing
(or interpolation) is not allowed. The solution is possible using only homography
mapping.

References
[1] D. A. Forsyth and J. Ponce. Computer Vision: A Modern Approach. Prentice Hall,

2002.

10

