
Assignment 2: Recognition using histograms,
convolution, and image filtering

Machine perception

2022/2023

Create a folder assignment2 that you will use during this assignment. Unpack the
content of the assignment2.zip that you can download from the course webpage to the
folder. Save the solutions for the assignments as Python scripts to assignment2 folder.
In order to complete the assignment you have to present your solutions to the teaching
assistant. Some assignments contain questions that require sketching, writing or manual
calculation. Write these answers down and bring them to the assignment defense as well.

The maximum total amount of points for each assignment is 100. All the tasks in the
assignment are mandatory, except if they are marked with F . You can obtain 75 points
for solving all the mandatory tasks. The remaining 25 points can be gained by solving
optional tasks. There might be more than 25 points for optional assignments. In that
case, the maximum of 100 points can not be exceeded, even if you solve all of them. The
number of points for each optional task is written next to the instructions.

At the defense, the obligatory tasks must be implemented correctly and completely.
If your implementation is incomplete, you will not be able to successfully defend the
assignment.

Introduction
This exercise contains three exercises. In the first one, you will familiarize yourself with
several methods of histogram comparison on the domain of image retrieval. In the sec-
ond assignment, you will learn about convolution, which is a basic operation in image
processing. The third will deal with image filtering and removing noise.

Exercise 1: Global approach to image description
In the previous assignment, we used histograms created from a single channel images.
Now we will extend this to multi-dimensional histograms and use histograms as global
image descriptors in order to compare images.

(a) Firstly, you will implement the function myhist3 that computes a 3-D histogram
from a three channel image. The images you will use are RGB, but the function
should also work on other color spaces. The resulting histogram is stored in a 3-D
matrix. The size of the resulting histogram is determined by the parameter n_bins.

1

The bin range calculation is exactly the same as in the previous assignment, except
now you will get one index for each image channel. Iterate through the image pixels
and increment the appropriate histogram cells. You can create an empty 3-D numpy
array with H = np.zeros((n_bins,n_bins,n_bins)). Take care that you normalize
the resulting histogram.

(b) In order to perform image comparison using histograms, we need to implement
some distance measures. These are defined for two input histograms and return a
single scalar value that represents the similarity (or distance) between the two his-
tograms. Implement a function compare_histograms that accepts two histograms
and a string that identifies the distance measure you wish to calculate. You can
start with the L2 metric.

The L2 metric (commonly known as Euclidean distance) treats histograms with N
bins as points in N -dimensional space. For histograms h1 in h2 (that of course must
have the same number of bins) the L2 distance is defined as:

L2 =
[∑

i=1:N
(h1(i)− h2(i))2

] 1
2
. (1)

Also implement the following measures that are more suitable for histogram com-
parison:

• Chi-square distance χ2 = 1
2

∑
i=1:N

(h1(i)−h2(i))2
h1(i)+h2(i)+ε0

, where ε0 is a very small constant

value (e.g. 1e− 10) that is used to avoid division by zero.

• Intersection I = 1−
∑

i=1:N min(h1(i), h2(i))

• Hellinger distance H =
(
1
2

∑
i=1:N

(h1(i)
1
2 − h2(i)

1
2)2
) 1

2

Try to avoid looping over histogram values and instead use vector operations on
entire matrices at once.

(c) Test your function with the following images:

• dataset/object_01_1.png,

• dataset/object_02_1.png,

• dataset/object_03_1.png.

Compute a 8×8×8-bin 3-D histogram for each image. Reshape each of them into a
1-D array. Using plt.subplot(), display all three images in the same window as well
as their corresponding histograms. Compute the L2 distance between histograms of
object 1 and 2 as well as L2 distance between histograms of objects 1 and 3.

Question: Which image (object_02_1.png or object_03_1.png) is more similar
to image object_01_1.png considering the L2 distance? How about the other three
distances? We can see that all three histograms contain a strongly expressed com-
ponent (one bin has a much higher value than the others). Which color does this
bin represent?

2

(d) You will now implement a simple image retrieval system that will use histograms.
Write a function that will accept the path to the image directory and the parameter
n_bins and then calculate RGB histograms for all images in the directory as well as
transform them to 1-D arrays. Store the histograms in an appropriate data structure.

Select some image from the directory dataset/ and compute the distance between
its histogram and all the other histograms you calculated before. Sort the list ac-
cording to the calculated similarity and display the reference image and the first
five most similar images to it. Also display the corresponding histograms. Do this
for all four distance measures that you implemented earlier.

Question: Which distance is in your opinion best suited for image retrieval? How
does the retrieved sequence change if you use a different number of bins? Is the
execution time affected by the number of bins?

(e) You can get a better sense of the differences in the distance values if you plot all
of them at the same time. Use the function plt.plot() to display image indices

3

on the x axis and distances to the reference image on the y axis. Display both the
unsorted and the sorted image sequence and mark the most similar values using a
circle (see pyplot documentation).

(f) F (10 points) This simple retrieval system is strongly influenced by dominant colors
that carry no discriminative information. Analyze the presence of different colors by
summing up all image histograms bin-wise and displaying the resulting histogram.
Which bins dominate this histogram?

To address this issue, you will implement a simple frequency-based weighting tech-
nique, similar to the ones that are employed in document retrieval systems. Use the
combined frequency histogram you calculated to determine the weight for each bin.
The weights should be lower for bins that are strongly represented in the frequency
histogram and vice versa. One way of computing this weight is to use exponential
function wi = e−λF (i), where F (i) represents a frequency of the i-th bin and λ is
a scaling constant that you have to set. There are also other ways of computing
weights that you can experiment with. Before calculating histogram similarity, you
should multiply each histogram with the weights vector bin-wise (and normalize
the result). Finally, you can compare the retrieval process for the weighted and
the unweighted histograms. Report your observations. Did the weighting help with
retrieving relevant results?

Exercise 2: Convolution
A basic operation that is used in image processing is called convolution. For easier un-
derstanding, you will first implement the 1-D version of the operation. Convolution of a
kernel g(x) with a signal I(x) is defined by the following equation:

Ig(x) = g(x) ? I(x) =

∞∫
−∞

g(u)I(x− u)du, (2)

or in the case of discrete signals (i.e. images):

Ig(i) = g(i) ? I(i) =
∞∑
−∞

g(j)I(i− j)dj. (3)

4

A nice visualization of convolution can be seen on Wikipedia1. In practice, the kernel is
of finite size, thus the sum only runs from the leftmost element to the rightmost element of
the kernel. Intuitively, the kernel is flipped and overlayed on the signal and the overlapping
region is multiplied element-wise with signal, then summed. This sum is the result at
position i.

(a) Compute the convolution between the signal and kernel below (k ? f) by hand.

f = 0 1 1 1 0 0.7 0.5 0.2 0 0 1 0 k = 0.5 1 0.3

(b) Implement the function simple_convolution that uses a 1-D signal I and a kernel
k of size 2N + 1. The function should return the convolution between the two.
To simplify, you only need to calculate the convolution on signal elements from
i = N to i = |I| − N . The first and last N elements of the signal will not be
used (this is different in practice where signal edges must be accounted for). Test
your implementation by loading the signal (file signal.txt) and the kernel (file
kernal.txt) using the function read_data from a2_utils.py and performing the
operation. Display the signal, the kernel and the result on the same figure. You can
compare your result with the result of function cv2.filter2D. Note that the shape
should be generally identical, while the values at the edges of the results and the
results’ offset might be different since you will not be addressing the issue of the
border pixels.

Question: Can you recognize the shape of the kernel? What is the sum of the
elements in the kernel? How does the kernel affect the signal?

(c) F (5 points) Improve the function simple_convolution by also addressing the
edges of the signal. To do this, implement one of the common methods for padding
the signal so the operation can be performed on all the signal elements. Take care
that the input and the output signals are the same length.

1http://en.wikipedia.org/wiki/Convolution

5

http://en.wikipedia.org/wiki/Convolution

(d) Write a function that calculates a Gaussian kernel. Use the definition:

g(x) =
1√
2πσ

exp(− x2

2σ2
). (4)

The input to the function should be parameter σ, which defines the shape of the
kernel. Because the values beyond 3σ are very small, we usually limit the kernel size
to 2 ∗ d3σe+ 1. Don’t forget to normalize the kernel. Generate kernels for different
values of σ = 0.5, 1, 2, 3, 4 and display them on the same figure (aligned).

Question: The figure below shows two kernels (a) and (b) as well as signal (c).
Sketch (do not focus on exact proportions of your drawing but rather on the under-
standing of what you are doing) the resulting convolved signal of the given input
signal and each kernel.

(e) The main advantage of convolution in comparison to correlation is the associativity
of operations. This allows us to pre-calculate multiple kernels that we want to use
on an image. Test this property by loading the signal from signal.txt and then
performing two consecutive convolutions on it. The first one will be with a Gaussian
kernel k1 with σ = 2 and the second one will be with kernel k2 = [0.1, 0.6, 0.4]. Then,
convolve the signal again, but switch the order of the operations. Finally, create a

6

kernel k3 = k1∗k2 and perform the convolution of the original signal with it. Display
all the resulting signals and comment on the effect the different order of operations
has on the signal. Use the function from c) or cv2.filter2D() to take care of the
edges when convolving.

Exercise 3: Image filtering
This exercise will teach you how to use convolution on 2-D signals to achieve image
filtering. Filtering can be used to smooth or sharpen images, or to remove certain types
of noise from the image. You will also experiment with some filters that are not based on
convolution.

(a) An important property of the Gaussian kernel is its separability in multiple dimen-
sions. A Gaussian kernel in 2-D space can be written as:

G(x, y) =
1

2πσ
exp(−0.5x

2 + y2

σ2
) (5)

= [
1√
2πσ

exp(− x2

2σ2
)][

1√
2πσ

exp(− y2

2σ2
)]

= g(x)g(y),

which is a product of two 1D Gaussian kernels, each one in its own dimension. If we
again write a continuous convolution

G(x, y) ∗ I(x, y) =

∫
u

∫
v

g(u)g(v)I(x− u, y − v)dudv (6)

=

∫
u

g(u)(

∫
v

g(v)I(x− u, y − v)du)dv

= g(x) ∗ [g(y) ∗ I(x, y)],

we can see that we get the same result if we filter a 2-D signal using a single 2-D
Gaussian kernel or if we do it using two 1D Gaussian kernels that represent the
separated components of the former 2-D Gaussian kernel. This technique can be
used to translate a slow n-D filtering operation to a fast sequence of 1-D filtering
operations.

Write a function gaussfilter that generates a Gaussian filter and applies it to a
2-D image. You can use the function cv2.filter2D() to perform the convolution
using the desired kernel. Generate a 1-D Gaussian kernel and first use it to filter

7

the image along the first dimension, then convolve the result using the same kernel,
but transposed.

Hint: Numpy arrays have an attribute named T, which is used to access the transpose
of the array, e.g. k_transposed = k.T.

Test the function by loading the image lena.png and converting it to grayscale.
Then, corrupt the image with Gaussian noise (every pixel value is offset by a ran-
dom number sampled from the Gaussian distribution) and separately with salt-
and-pepper noise. You can use the functions gauss_noise and sp_noise that are
included with the instructions (a2_utils.py). Use the function gaussfilter to try
and remove noise from both images.

Question: Which noise is better removed using the Gaussian filter?

(b) Convolution can also be used for image sharpening. Look at its definition in the
lecture slides and implement it. Test it on the image from file museum.jpg.

(c) Implement a nonlinear median filter. While a Gaussian filter locally computes a
weighted average, the median filter sorts the signal values in the given filter window

8

and uses the median value of the sorted sequence as the result. Implement a simple
median filter as a function simple_median that takes the input signal I and the
filter width w and returns the filtered signal.

Create a 1-D signal corrupted with salt and pepper noise and filter it using sim-
ple_median. Display the result using different window sizes. Also try to remove the
noise using the Gaussian filter. What does the result look like and why?

Question: Which filter performs better at this specific task? In comparison to
Gaussian filter that can be applied multiple times in any order, does the order
matter in case of median filter? What is the name of filters like this?

(d) F (5 points) Implement a 2-D version of the median filter. Test it on an image
that was corrupted by Gaussian noise and on an image that was corrupted by salt
and pepper noise. Compare the results with the Gaussian filter for multiple noise
intensities and filter sizes.

Question: What is the computational complexity of the Gaussian filter operation?
How about the median filter? What does it depend on? Describe the computational
complexity using the O(·) notation (you can assume n log n complexity for sorting).

(e) F (15 points) Implement the hybrid image merging that was presented at the lec-
tures. To do this you will have to implement the Laplacian filter. Filter the images

9

(one with the Gaussian and one with the Laplacian filter) and merge them together
(regular or weighted average). You can use images lincoln.jpg and obama.jpg.
Hint: To get good results, experiment with different kernel sizes for each operation
and different weights when merging images.

10

