
Assignment 3: Edges and Hough transform

Machine perception

2022/2023

Create a folder assignment3 that you will use during this assignment. Unpack the
content of the assignment3.zip that you can download from the course webpage to the
folder. Save the solutions for the assignments as Python scripts to assignment3 folder.
In order to complete the assignment you have to present your solutions to the teaching
assistant. Some assignments contain questions that require sketching, writing or manual
calculation. Write these answers down and bring them to the assignment defense as well.

The maximum total amount of points for each assignment is 100. All the tasks in the
assignment are mandatory, except if they are marked with F . You can obtain 75 points
for solving all the mandatory tasks. The remaining 25 points can be gained by solving
optional tasks. There might be more than 25 points for optional assignments. In that
case, the maximum of 100 points can not be exceeded, even if you solve all of them. The
number of points for each optional task is written next to the instructions.

At the defense, the obligatory tasks must be implemented correctly and completely.
If your implementation is incomplete, you will not be able to successfully defend the
assignment.

Introduction
For additional explanation of the theory, required for the following assignment, check the
slides from the lectures as well as scientific literature on these topics [1, 4]. A version of
the book by Forsyth in Ponce can also be found online [2] – the related theory is located
in chapters 8 and 15.

Exercise 1: Image derivatives
The first and the second exercise will deal with the problem of detecting edges in images.
A way of detecting edges is by analyzing local changes of grayscale levels. Mathematically
this means that we are computing image derivatives. The downside of an image derivative
at a certain point in the image is that it can be sensitive to image noise. Thus, it is
common to soften the image beforehand with a narrow filter Ib(x, y) = G(x, y) ∗ I(x, y)
and only then calculate the derivative.

Usually, a Gaussian filter is used to smooth the image. As we will use partial derivatives
in the following exercises, we will first look at the decomposition of the partial derivative
of the Gaussian kernel. A 2-D Gaussian kernel can be written as a product of two 1-D

1

kernels as:
G(x, y) = g(x)g(y), (1)

therefore image filtering for image I(x, y) can be formulated as

Ib(x, y) = g(x) ∗ g(y) ∗ I(x, y). (2)

Taking into account the associative property of the convolution d
dx
(g ∗ f) = (d

dx
g) ∗ f ,

we can write a partial derivative of the smoothed image with respect to x as:

Ix(x, y) =
δ

δx

[
g(x) ∗ g(y) ∗ I(x, y)

]
=

d

dx
g(x) ∗

[
g(y) ∗ I(x, y)

]
. (3)

This means that the input image can be first filtered with a Gaussian kernel with
respect to y and then filter the result with the derivative of the Gaussian kernel with
respect to x. Similarly, we can define the second partial derivative with respect to x,
however, we have to remember to always filter the image before we perform derivation.
The second derivative with respect to x is therefore defined as a partial derivative of
already derived image:

Ixx(x, y) =
δ

δx

[
g(x) ∗ g(y) ∗ Ix(x, y)

]
=

d

dx
g(x) ∗

[
g(y) ∗ Ix(x, y)

]
. (4)

(a) Follow the equations above and derive the equations used to compute first and
second derivatives with respect to y: Iy(x, y), Iyy(x, y), as well as the mixed derivative
Ixy(x, y)

(b) Implement a function that computes the derivative of a 1-D Gaussian kernel. The
formula for the derivative of the Gaussian kernel is:

d

dx
g(x) =

d

dx

1√
2πσ

exp(− x2

2σ2
) (5)

= − 1√
2πσ3

x exp(− x2

2σ2
).

Implement the function gaussdx(sigma) that works the same as function gauss
from the previous assignment. Don’t forget to normalize the kernel. Be careful as
the derivative is an odd function, so a simple sum will not do. Instead normalize the
kernel by dividing the values such that the sum of absolute values is 1. Effectively,
you have to divide each value by

∑
abs(gx(x)).

(c) The properties of the filter can be analyzed by using an impulse response function.
This is performed as a convolution of the filter with a Dirac delta function. The
discrete version of the Dirac function is constructed as a finite image that has all
elements set to 0 except the central element, which is set to a high value (e.g. 1).

impulse = np.zeros((50, 50))
impulse[25, 25] = 1

Generate a 1-D Gaussian kernel G and a Gaussian derivative kernel D.

What happens if you apply the following operations to the impulse image?

2

(a) First convolution with G and then convolution with GT .

(b) First convolution with G and then convolution with DT .

(c) First convolution with D and then convolution with GT .

(d) First convolution with GT and then convolution with D.

(e) First convolution with DT and then convolution with G.

Is the order of operations important? Display the images of the impulse responses
for different combinations of operations.

(d) Implement a function that uses functions gauss and gaussdx to compute both
partial derivatives of a given image with respect to x and with respect to y.

Similarly, implement a function that returns partial second order derivatives of a
given image.

Additionally, implement the function gradient_magnitude that accepts a grayscale
image I and returns both derivative magnitudes and derivative angles. Magnitude
is calculated as m(x, y) =

√
(Ix(x, y)2 + Iy(x, y)2) and angles are calculated as

φ(x, y) = arctan(Iy(x, y)/Ix(x, y))

Hint: Use function np.arctan2 to avoid division by zero for calculating the arctan-
gent function.

Use all the implemented functions on the same image and display the results in the
same window.

3

(e) F (15 points) Gradient information is often used in image recognition. Extend your
image retrieval system from the previous assignment to use a simple gradient-based
feature instead of color histograms. To calculate this feature, compute gradient
magnitudes and angles for the entire image, then divide the image in a 8 × 8 grid.
For each cell of the grid compute a 8 bin histogram of gradient magnitudes with
respect to gradient angle (quantize the angles into 8 values, then for each pixel of
the cell, add the value of the gradient to the bin specified by the corresponding
angle). Combine all the histograms to get a single 1-D feature for every image. Test
the new feature on the image database from the previous assignment. Compare the
new results to the color histogram based retrieval.

Exercise 2: Edges in images
One of the most widely used edge detector algorithms is Canny edge detector. In this
exercise you will implement parts of Canny’s algorithm.

(a) Firstly, create a function findedges that accepts an image I, and the parameters
sigma and theta.

The function should create a binary matrix Ie that only keeps pixels higher than
threshold theta:

Ie(x, y) =

{
1 ; Imag(x, y) ≥ ϑ
0 ; otherwise

(6)

Test the function with the image museum.png and display the results for different
values of the parameter theta. Can you set the parameter so that all the edges in
the image are clearly visible?

(b) Using magnitude produces only a first approximation of detected edges. Unfortu-
nately, these are often wide and we would like to only return edges one pixel wide.
Therefore, you will implement non-maxima suppression based on the image deriva-
tive magnitudes and angles. Iterate through all the pixels and for each search its
8-neighborhood. Check the neighboring pixels parallel to the gradient direction and
set the current pixel to 0 if it is not the largest in the neighborhood (based on
derivative magnitude). You only need to compute the comparison to actual pixels,
interpolating to more accuracy is not required.

4

(c) F (10 points) The final step of Canny’s algorithm is edge tracking by hysteresis.
Add the final step after performing non-maxima suppression along edges. Hysteresis
uses two thresholds tlow < thigh, keeps all pixels above thigh and discards all pixels
below tlow. The pixels between the thresholds are kept only if they are connected to
a pixel above thigh.

Hint: Since we are looking for connected components containing at least one pixel
above thigh, you could use something like cv2.connectedComponentsWithStats to
extract them. Try to avoid explicit for loops as much as possible.

Exercise 3: Detecting lines
In this exercise we will look at the Hough algorithm, in particular the variation of the
algorithm that is used to detect lines in an image. For more information about the theory
look at the lecture slides as well as the literature [1], and a web applet that demonstrates
the Hough transform, e.g. [3].

We have a point in the image p0 = (x0, y0). If we know that the equation of a line is
y = mx+ c, which are all the lines that are running through the point p0? The answer is
simple: all the lines whose parameters m and c correspond to the equation y0 = mx0+c. If
we fix the values (x0, y0), then the variable parameters again describe a line, however, this
time the line is in the (m, c) space that we also call the parameter space. If we consider a
new point p1 = (x1, y1), this new point also has a line in the (m, c) space. This line crosses
the p0 line at a point (m′, c′). The point (m′, c′) then defines a line in (x, y) space that
connects the points p0 and p1.

Question: Analytically solve the problem by using Hough transform: In 2D space
you are given four points (0, 0), (1, 1), (1, 0), (2, 2). Define the equations of the lines that

5

run through at least two of these points.

If we want to find all the lines in an image using the Hough approach in a program,
we have to proceed as described. The parameter space (m, c) is first quantized as an
accumulator matrix. For each edge pixel we draw a corresponding line in the (m, c) space
in an additive manner (increase the value by 1). All the image elements that lie on the
same line in the input image will generate lines in the (m, c) space that will intersect at
the same point and therefore increase the value of the same accumulator cell. This means
that local maxima in the (m, c) space define the lines in the input image that contain a
lot of the detected edge pixels.

In real scenarios the y = mx + c formulation of a line is inefficient. This is especially
apparent in the case of vertical lines, there m becomes infinite. This problem can be
avoided by a different line parametrization, for example using polar coordinates. In this
case the equation of a line looks like

x cos(ϑ) + y sin(ϑ) = ρ. (7)

The algorithm remains more or less the same, the only difference is that a point in
a (x, y) space generates a sinusoid in the (ϑ, ρ) space. For points (1, 1) and (1

2
,−1) the

corresponding curves in the parameter space are shown in the figure below.

(a) Create an accumulator array defined by the resolution on ρ and ϑ values. Calcu-
late the sinusoid that represents all the lines that pass through some nonzero point.
Increment the corresponding cells in the accumulator array. Experiment with dif-
ferent positions of the nonzero point to see how the sinusoid changes. You can set
the number of accumulator bins on each axis to 300 to begin with.

6

(b) Implement the function hough_find_lines that accepts a binary image, the number
of bins for ϑ and ρ (allow the possibility of them being different) and a threshold.

Create an accumulator matrix A for the parameter space (ρ, ϑ). Parameter ϑ is
defined in the interval from −π/2 to π/2, ρ is defined on the interval from −D to
D, where D is the length of the image diagonal. For each nonzero pixel in the image,
generate a curve in the (ρ, ϑ) space by using the equation (7) for all possible values
of ϑ and increase the corresponding cells in A. Display the accumulator matrix. Test
the method on your own synthetic images ((e.g. 100 × 100 black image, with two
white pixels at (10, 10) and (10, 20)).

Finally, test your function on two synthetic images oneline.png and rectan-
gle.png. First, you should obtain an edge map for each image using either your
function findedges or some inbuilt function. Run your implementation of the Hough
algorithm on the resulting edge maps.

7

(c) The sinusoids don’t usually intersect in only one point, resulting in more than one de-
tected line. Implement a function named nonmaxima_suppression_box that checks
the neighborhood of each pixel and set it to 0 if it is not the maximum value in the
neighborhood (only consider 8-neighborhood). If more neighbouring pixels have the
maximum value, keep only one.

(d) Search the parameter space and extract all the parameter pairs (ρ, ϑ) whose cor-
responding accumulator cell value is greater than a specified threshold threshold.
Draw the lines that correspond to the parameter pairs using the draw_line function
that you can find in the supplementary material.

(e) Read the image from files bricks.jpg and pier.jpg. Change the image to grayscale
and detect edges. Then detect lines using your algorithm. As the results will likely
depend on the number of pixels that vote for specific cell and this depends on the
size of the image and the resolution of the accumulator, try sorting the pairs by
their corresponding cell values in descending order and only select the top n = 10
lines. Display the results and experiment with parameters of Hough algorithm as
well as the edge detection algorithm, e.g. try changing the number of cells in the
accumulator or σ parameter in edge detection to obtain results that are similar or
better to the ones shown on the image below.

8

(f) F (5 points) A problem of the Hough transform is that we need a new dimension for
each additional parameter in the model, which makes the execution slow for more
complex models. We can avoid such parameters if we can reduce the parameter
space, e.g. by introducing domain knowledge. Recall from the previous exercise that
we can get the local gradient angle besides its magnitude. This angle is perpendicular
to the edge and can be used to limit the scope of the parameter ϑ for a specific edge
point. We therefore do not have to increase the values of the cells of the entire range
of ϑ (calculate multiple values of ρ), but can use the local angle and only work with
a single (ρ, ϑ) pair for each edge point.

Copy your implementation of the line detector to a new function and modify the
algorithm so that it also accepts the matrix of edge angles. Note that the angle values
were probably calculated using the np.arctan2(dy, dx) function that returns the
values between wider range. You have to adjust the angles so that they are within
the [−π/2, π/2] interval. Test the modified function on several images and compare
the results with the original implementation.

9

(g) F (5 points) Implement a Hough transform that detects circles of a fixed radius.
You can test the algorithm on image eclipse.jpg. Try using a radius somewhere
between 45 and 50 pixels.

(h) F (15 points) Not all lines can accumulate the same number of votes, e.g. if the
image is not square, candidates along the longer dimension are in better position.

10

Extend your algorithm so that it normalizes the number of votes according to the
maximum number of votes possible for a given line (how many pixels does a line
cover along its crossing of the image). Demonstrate the difference on some non-
rectangular images where the difference can be shown clearly.

References
[1] D. A. Forsyth and J. Ponce. Computer Vision: A Modern Approach. Prentice Hall,

2002.

[2] D. A. Forsyth and J. Ponce. Computer vision: A modern approach (on-
line version). http://www.cs.washington.edu/education/courses/cse455/02wi/
readings/book-7-revised-a-indx.pdf, 2003.

[3] Simon Hohl. Interactive hough transform. http://dersmon.github.io/
HoughTransformationDemo/.

[4] R. E. Woods, R. C. Gonzalez, and P. A. Wintz. Digital Image Processing, 3 ed. Pearson
Education, 2010.

11

http://www.cs.washington.edu/education/courses/cse455/02wi/readings/book-7-revised-a-indx.pdf
http://www.cs.washington.edu/education/courses/cse455/02wi/readings/book-7-revised-a-indx.pdf
http://dersmon.github.io/HoughTransformationDemo/
http://dersmon.github.io/HoughTransformationDemo/

