Assignment 1: Basic image processing and histograms

Machine perception

2022/2023

Create a folder assignmentl that you will use during this assignment. Unpack the
content of the assignmentl.zip that you can download from the course webpage to the
folder. Save the solutions for the assignments as Python scripts to assignmentl folder.
In order to complete the assignment you have to present your solutions to the teaching
assistant. Some assignments contain questions that require sketching, writing or manual
calculation. Write these answers down and bring them to the assignment defense as well.

The maximum total amount of points for each assignment is 100. All the tasks in the
assignment are mandatory, except if they are marked with % . You can obtain 75 points
for solving all the mandatory tasks. The remaining 25 points can be gained by solving
optional tasks. There might be more than 25 points for optional assignments. In that
case, the maximum of 100 points can not be exceeded, even if you solve all of them. The
number of points for each optional task is written next to the instructions.

At the defense, the obligatory tasks must be implemented correctly and completely.
If your implementation is incomplete, you will not be able to successfully defend the
assignment.

The purpose of this assignment is to familiarize yourself with the working of NumPy and
OpenCV libraries that will be used for the practical part of this course. This assignment
will cover reading image data into matrices, manipulating parts of images or channels,
describing images with histograms, basic thresholding, and morphological operations.

Exercise 1: Basic image processing

In the archive assignmentl.zip you will find the utility functions that you can use for
reading and displaying images in file UZ_utils.py.

(a) Read the image from the file umbrellas. jpg and display it using the following
snippet:

from UZ_utils import *
I = imread('image.jpg')
imshow (I)

This snippet uses our imread function that reads the image, converts it to floating
points and normalizes its values to the interval [0, 1]. If you require images of integer



type, you can also read them using cv2.imread () or plt.imread(). You can import
libraries NumPy, OpenCV and Pyplot like in the following snippet:

import NumPy as np
import cv2
from matplotlib import pyplot as plt

The image is now represented as a NumPy array. You can check its size by using the
following command height, width, channels = I.shape. Just as important is the
type of the matrix (in NumPy accessed with I.dtype). Images are usually loaded as
a matrix of type np.uint8, which represents unsigned integers with 8 bits, effectively
giving the range of [0,255]. In this course, only np.uint8 and np.float64 types
will be used for representing images. The conversion can be performed as follows:
I_float = I.astype(np.float64)

Note: It is a good practice to always convert the image to float data type and scale
it to [0, 1]. See the file UZ_wutils.py for an example and other utilities.

Note: Beware of assignment by reference. The command I_new=I for NumPy arrays
only creates a new reference to the same data and does not copy it. You can copy
the data using I_new=np.copy(I).

Note: The library pyplot can be used to display image data (function plt.imshow(I)).
The function plt.show() must then be called in order for the window to be dis-
played.

(b) Convert the loaded image to grayscale.! A very simple way of doing this is summing
up the color channels and dividing the result by 3, effectively averaging the values.
The issue, however, is that the sum easily reaches beyond the np.uint8 range. We
can avoid that by casting the data to a floating point type. You can access a specific
image channel using the indexing syntax like red = I[:,:,0].

Note: If loading images using cv2.imread() in fact returns the channel ordering
BGR instead of RGB. This can be fixed using I = cv2.cvtColor(I, cv2.COLOR_-
BGR2RGB)

(c) Cut and display a specific part of the loaded image. Extract only one of the channels
so you get a grayscale image. You can do this by indexing along the first two axes,
for instance: cutout=I[130:260, 240:450, 1]. You can display multiple images in
a single window using plt.subplot().

Grayscale images can be displayed using different mappings (on a RGB monitor,
every value needs to be mapped to a RGB triplet). Pyplot defaults to a color map
named viridis, but often it is preferable to use a grayscale color map. This can be set
with an additional argument to plt.imshow, like plt.imshow(I, cmap=’gray’).

Question: Why would you use different color maps?
(d) You can also replace only a part of the image using indexing. Write a script that

inverts a rectangular part of the image. This can be done pixel by pixel in a loop or
by using indexing.

Question: How is inverting a grayscale value defined for wint§?

"'When the instructions are given to implement something specifically like here, you are not allowed
to use implementations from libraries that do exactly what your task is.



(e)

Perform a reduction of grayscale levels in the image. First read the image from
umbrellas. jpg and convert it to grayscale. You can write your own function for
grayscale conversion or use the function in UZ utils.py.

Convert the grayscale image to floating point type. Then, rescale the image values
so that the largest possible value is 63. Convert the image back to uint§ and display
both the original and the modified image. Notice that both look the same. Pyplot
tries to maximize the contrast in displayed images by checking their values and
scaling them to cover the entire uint8§ interval. If you want to avoid this, you need
to set the maximum expected value when using plt.imshow(), like plt.imshow (I,
vmax=255. Use this to display the resulting image so the change is visible.

Exercise 2: Thresholding and histograms

Thresholding an image is an operation that produces a binary image (mask) of the same
size where the value of pixels is determined by whether the value of the corresponding
pixels in the source image is greater or lower than the given threshold.

(a)

Create a binary mask from a grayscale image. The binary mask is a matrix the same
size as the image which contains 1 where some condition holds and 0 everywhere
else. In this case the condition is simply the original image intensity. Use the image
bird. jpg. Display both the image and the mask.

The binary mask creation can be performed by using the selection syntax of NumPy
and separately setting all pixels larger and smaller than the threshold to 0 or 1
respectively:

threshold = 80

I[I<threshold]=0
I[I>=threshold]=1

Alternatively, this can also be done by using np.where(condition, x, y). If the
condition holds, the value will be replaced by x, otherwise by y. Write a script
that implements both ways. Experiment with different threshold values to obtain a
reasonably good mask of the central object in the image.

Setting the threshold manually can be tedious. We will use a representation of the
image called a histogram to try and set the threshold automatically.




Write a function myhist that accepts a grayscale image and the number of bins that
will be used in building a histogram. The function should return a 1D array that
represents the image histogram (the size should be equal to the number of bins, of
course).

The histogram is simply a count of pixels with same (or similar) intensity for all
bins. You can assume the values of the image are within the interval [0,255]. If you
use fewer than 255 bins, intensities will have to be grouped together, e.g. if using 10
bins, all values on the interval [0,25] will fall into bin 0. You can create an empty
NumPy array with H = np.zeros(n_bins)

Hint: You may want to use I.reshape(-1) to unroll your image into a 1D vector.

Question: The histograms are usually normalized by dividing the result by the
sum of all cells. Why is that?

Write a script that calculates and displays histograms for different numbers of bins
using bird. jpg.

0.4 4

0.3

0.2 4

0.1

Ll
0.00 - y y t T T 0.0+

0 20 40 60 80 100 00 25 50 75 100 125 15.0 17.5 20.0

% (5 points) Modify your function myhist to no longer assume the wint§ range
for values. Instead, it should find the maximum and minimum values in the image
and calculate the bin ranges based on these values. Write a script that shows the
difference between both versions of the function.

% (5 points) Test myhist function on images (three or more) of the same scene in
different lighting conditions. One way to do this is to capture several images using
your web camera and change the lighting of the room. Visualize the histograms for
all images for different number of bins and interpret the results.

% (15 points) Implement Otsu’s method for automatic threshold calculation. It
should accept a grayscale image and return the optimal threshold. Using normalized
histograms, the probabilities of both classes are easy to calculate. Write a script that
shows the algorithm’s results on different images.



https://w.wiki/49YM

Exercise 3: Morphological operations and regions

While thresholding can in some cases give you a good mask of the object, it is still just a
global technique that can produce artifacts such as holes in the object or unwanted noise on
the background. Such artifacts are best removed before further processing. Morphological
operations can be used for removing them.

(a) We will perform two basic morphological operations on the image mask.png, erosion
and dilation. We will also experiment with combinations of both operations, named
opening and closing.

Use the following snippet and write a script that performs both operations with
different sizes of the structuring element. Also combine both operations sequentially
and display the results.

n=>5

SE = np.ones((n,n), np.uint8) # create a square structuring element
I_eroded = cv2.erode(I, SE)

I_dilated = cv2.dilate(I, SE)

Question: Based on the results, which order of erosion and dilation operations
produces opening and which closing?

(b) Try to clean up the mask of the image bird.jpg using morphological operations
as shown in the image. Experiment with different sizes of the structuring element.
You can also try different shapes, like cv2.getStructuringElement (cv2.MORPH_-
ELLIPSE, (n,n)).



()

% (5 points) Write a function immask that accepts a three channel image and
a binary mask and returns an image where pixel values are set to black if the
corresponding pixel in the mask is equal to 0. Otherwise, the pixel value should be
equal to the corresponding image pixel. Do not use for loops, as they are slow.

Hint: Use np.expand_dims function to make the mask and the image to have the
same number of axes.

Create a mask from the image in file eagle. jpg and visualize the result with immask
(if available, otherwise simply display the mask). Use Otsu’s method if available,
else use a manually set threshold.

Question: Why is the background included in the mask and not the object? How
would you fix that in general? (just inverting the mask if necessary doesn’t count)

Another way to process a mask is to extract connected components. To do this, you
can use the function cv2.connectedComponentsWithStats® that accepts a binary
image and returns information about the connected components present in it. Write
a script that loads the image coins. jpg, calculates a mask and cleans it up using
morphological operations. Your goal is to get the coins as precisely as possible. Then,
using connected components, remove the coins whose area is larger than 700 pixels
from the original image (replace them with white background). Display the results.

2Documentation available at https://bit.ly/3uFKYTY


https://bit.ly/3uFKYTY

100

400

image

result




