uz_assignments/assignment4/solution.py

165 lines
5.3 KiB
Python
Raw Normal View History

2022-11-26 14:42:48 +01:00
import numpy as np
import numpy.typing as npt
from matplotlib import pyplot as plt
import cv2
import uz_framework.image as uz_image
import uz_framework.text as uz_text
import os
##############################################
# EXCERCISE 1: Exercise 1: Image derivatives #
##############################################
def ex1():
one_a()
2022-11-26 16:06:18 +01:00
one_b()
2022-11-26 14:42:48 +01:00
def one_a() -> None:
img = uz_image.imread_gray("data/graf/graf_a.jpg", uz_image.ImageType.float64)
sigmas = [3, 6, 9, 12]
# Plot the points
fig, axs = plt.subplots(2, len(sigmas))
2022-11-26 16:06:18 +01:00
fig.suptitle("Hessian corner detection")
2022-11-26 14:42:48 +01:00
for i, sigma in enumerate(sigmas):
determinant, hessian_points = uz_image.hessian_points(img, sigma, 0.004)
# Plot determinant
axs[0, i].imshow(determinant)
axs[0, i].set_title(f"Sigma: {sigma}")
# Plot grayscale image
axs[1, i].imshow(img, cmap="gray")
2022-11-26 18:02:39 +01:00
# Plot scatter hessian points (x, y)
2022-11-26 16:06:18 +01:00
axs[1, i].scatter(hessian_points[:, 1], hessian_points[:, 0], s=20, c="r", marker="x")
2022-11-26 14:42:48 +01:00
plt.show()
2022-11-26 16:06:18 +01:00
def one_b() -> None:
img = uz_image.imread_gray("data/graf/graf_a.jpg", uz_image.ImageType.float64)
sigmas = [3, 6, 9]
# Plot the points
fig, axs = plt.subplots(2, len(sigmas))
fig.suptitle("Harris corner detection")
for i, sigma in enumerate(sigmas):
determinant, harris_points = uz_image.harris_detector(img, sigma, treshold=1e-6)
# Plot determinant
axs[0, i].imshow(determinant)
axs[0, i].set_title(f"Sigma: {sigma}")
# Plot grayscale image
axs[1, i].imshow(img, cmap="gray")
# Plot scatter hessian points
axs[1, i].scatter(harris_points[:, 1], harris_points[:, 0], s=20, c="r", marker="x")
plt.show()
2022-11-26 18:02:39 +01:00
def ex2():
2022-11-26 23:03:08 +01:00
#two_a()
two_b()
2022-11-26 18:02:39 +01:00
def two_a() -> None:
"""
Hello
"""
graph_a_small = uz_image.imread_gray("data/graf/graf_a_small.jpg", uz_image.ImageType.float64)
graph_b_small = uz_image.imread_gray("data/graf/graf_b_small.jpg", uz_image.ImageType.float64)
# Get the keypoints
_, graph_a_keypoints = uz_image.harris_detector(graph_a_small, 3, treshold=1e-6)
_, graph_b_keypoints = uz_image.harris_detector(graph_b_small, 3, treshold=1e-6)
# Get the descriptors
graph_a_descriptors = uz_image.simple_descriptors(graph_a_small, graph_a_keypoints[:,0], graph_a_keypoints[:,1])
graph_b_descriptors = uz_image.simple_descriptors(graph_b_small, graph_b_keypoints[:,0], graph_b_keypoints[:,1])
# Find the correspondences
matches_a = uz_image.find_correspondences(graph_a_descriptors, graph_b_descriptors)
matches_b = uz_image.find_correspondences(graph_b_descriptors, graph_a_descriptors)
matches_a_coordinates = []
matche_b_coordinates = []
for i, match in enumerate(matches_a):
if i % 2 == 0: # plot every second one
if np.flip(match) in matches_b: # Check if the match is reciprocal
2022-11-26 23:03:08 +01:00
print(np.argwhere(matches_b == np.flip(match)))
2022-11-26 18:02:39 +01:00
matches_a_coordinates.append(np.flip(graph_a_keypoints[match[0]]))
matche_b_coordinates.append(np.flip(graph_b_keypoints[match[1]]))
else:
print("Not reciprocal")
# Plot the matches
uz_image.display_matches(graph_a_small, matches_a_coordinates, graph_b_small, matche_b_coordinates)
def two_b() -> None:
"""
jjjjj
"""
2022-11-27 12:58:38 +01:00
#graph_a_small = uz_image.imread_gray("datam/img1.jpg", uz_image.ImageType.float64)
#graph_b_small = uz_image.imread_gray("datam/img2.jpg", uz_image.ImageType.float64)
graph_a_small = uz_image.imread_gray("data/graf/graf_a_small.jpg", uz_image.ImageType.float64)
graph_b_small = uz_image.imread_gray("data/graf/graf_b_small.jpg", uz_image.ImageType.float64)
2022-11-26 18:02:39 +01:00
2022-11-26 23:03:08 +01:00
a, b = uz_image.find_matches(graph_a_small, graph_b_small)
2022-11-27 12:58:38 +01:00
print(a)
print(b)
2022-11-26 23:03:08 +01:00
uz_image.display_matches(graph_a_small, a, graph_b_small, b)
2022-11-26 18:02:39 +01:00
2022-11-27 12:58:38 +01:00
def ex3():
three_a()
def three_a() -> None:
"""
hello
"""
keypoints_path = ["data/newyork/newyork.txt", "data/graf/graf.txt"]
images_a_path = ["data/newyork/newyork_a.jpg", "data/graf/graf_a.jpg"]
images_b_path = ["data/newyork/newyork_b.jpg", "data/graf/graf_b.jpg"]
def map_keypoints(keypoints):
# Map the keypoints
a_points =[]
b_points = []
for row in keypoints:
a_points.append((row[0], row[1]))
b_points.append((row[2], row[3]))
return np.array(a_points), np.array(b_points)
fig, axs = plt.subplots(4, 2)
fig.suptitle("Transformation and rotation using homography")
for i in range(len(keypoints_path)):
keypoints = np.loadtxt(keypoints_path[i], dtype=np.float64)
image_a = uz_image.imread_gray(images_a_path[i], uz_image.ImageType.float64)
image_b = uz_image.imread_gray(images_b_path[i], uz_image.ImageType.float64)
axs[i*2, 0].imshow(image_a, cmap="gray")
axs[i*2, 1].imshow(image_b, cmap="gray")
axs[i*2, 0].set_title("A")
axs[i*2, 1].set_title("B")
homography_matrix = uz_image.estimate_homography(image_a, image_b, keypoints)
img_output = cv2.warpPerspective(image_a, homography_matrix, (image_a.shape[1], image_a.shape[0]))
axs[i*2+1, 0].imshow(img_output, cmap="gray")
axs[i*2+1, 0].set_title("A transformed")
# invert keypoints
keypoints[:,[0, 1, 2, 3]] = keypoints[:,[2, 3, 0, 1]]
homography_matrix = uz_image.estimate_homography(image_a, image_b, keypoints)
img_output = cv2.warpPerspective(image_b, homography_matrix, (image_b.shape[1], image_b.shape[0]))
axs[i*2+1, 1].imshow(img_output, cmap="gray")
axs[i*2+1, 1].set_title("B transformed")
plt.show()
2022-11-26 16:06:18 +01:00
2022-11-26 14:42:48 +01:00
# ######## #
# SOLUTION #
# ######## #
def main():
2022-11-26 18:02:39 +01:00
#ex1()
2022-11-27 12:58:38 +01:00
#ex2()
ex3()
2022-11-26 14:42:48 +01:00
if __name__ == '__main__':
main()